scholarly journals Cells isolated from the human cortical interstitium resemble myofibroblasts and bind neutrophils in an ICAM-1--dependent manner.

1997 ◽  
Vol 8 (4) ◽  
pp. 604-615 ◽  
Author(s):  
A Clayton ◽  
R Steadman ◽  
J D Williams

Progressive renal disease is frequently accompanied by renal interstitial inflammation and fibrosis in which the activity of resident fibroblasts may be of central importance. Because there are relatively few fibroblasts in the normal cortical interstitium and there is no specific marker to permit their identification, these cells have proved difficult to characterize in vitro. In this study, these cells were isolated and established in culture, using CD90 as a positive selection marker. Antibodies to CD90 bound to tubular epithelial cells and fibroblasts, but not to glomerular cells in kidney sections. In culture, only fibroblasts were CD90-positive. These normal renal cortical fibroblasts (RCF) were alpha-smooth muscle actin- and vimentin-positive, but desmin-, cytokeratin-, and factor VIII-negative, identifying them as myofibroblasts. They expressed platelet-derived growth factor alpha and beta receptors; CD44; and alpha 2, beta 1, and beta 3 integrin chains: this combination of markers was also characteristic of fibroblasts in sections of normal cortex. These cells were positive for ICAM-1 but negative for VCAM-1. Similarly, proliferating or growth-arrested renal cortical fibroblasts (RCF) in culture expressed ICAM-1 but not VCAM-1. The expression of VCAM-1 was detected, however, and that of ICAM-1 was increased on fibroblasts associated with inflammatory infiltrates in sections from fibrotic kidneys, and ICAM-1 and VCAM-1 were up-regulated on RCF in culture after incubation with increasing doses of interleukin-1 beta or tumor necrosis factor alpha (maximum between 24 and 48 h). These adhesion molecules were functional, and neutrophils adhered to resting and cytokine-activated RCF. Binding was maximal between 24 and 48 h after cytokine treatment and was inhibited by anti-CD18 antibodies. ICAM-1 is the principal adhesion molecule controlling inflammatory cell infiltration of the interstitium. The study presented here suggests that cortical fibroblasts may be central to the control of this infiltration.

1994 ◽  
Vol 301 (1) ◽  
pp. 183-186 ◽  
Author(s):  
A Ito ◽  
K Imada ◽  
T Sato ◽  
T Kubo ◽  
K Matsushima ◽  
...  

Uterine cervical fibroblasts prepared from rabbits at 23 days of gestation were found to produce spontaneously the neutrophil chemotactic factor/interleukin 8 (IL-8). When the cells were treated with recombinant human interleukin 1 alpha and 1 beta (rhIL-1 alpha and -1 beta), both cytokines similarly enhanced the production of IL-8 in a dose-dependent manner. Recombinant tumour necrosis factor alpha also enhanced its production to a lesser extent, but interleukin 6 failed to modulate the production. Physiological concentrations of progesterone suppressed both the spontaneous and IL-1-mediated production of IL-8 in parallel with the decrease in the steady-state levels of its mRNA. These suppressive actions of progesterone were offset by co-treatment of cells with a progesterone antagonist, mifepristone (RU486). In conclusion, basal and IL-1-induced IL-8 production in rabbit uterine cervical fibroblasts is down-regulated by progesterone at the transcriptional level. These results obtained in vitro and our previous observations indicating that progesterone modulates the extra-cellular matrix breakdown via the suppression of production of matrix metalloproteinases and the augmentation of production matrix metalloproteinases and the augmentation of production of their specific inhibitors (TIMP-1) [Sato, Ito, Mori, Yamashita, Hayakawa and Nagase (1991) Biochem. J. 275, 645-650] may explain the mechanisms of the maintenance of pregnancy until parturition and the acceleration of uterine cervical ripening and dilatation at term.


2016 ◽  
Vol 5 (3) ◽  
pp. 836-847 ◽  
Author(s):  
Crystal S. Lewis ◽  
Luisa Torres ◽  
Jeremy T. Miyauchi ◽  
Cyrus Rastegar ◽  
Jonathan M. Patete ◽  
...  

Abstract Understanding the nature of interactions between nanomaterials, such as commercially ubiquitous hematite (α-Fe2O3) nanorhombohedra (N-Rhomb) and biological systems is of critical importance for gaining insight into the practical applicability of nanomaterials. Microglia represent the first line of defense in the central nervous system (CNS) during severe injury or disease such as Parkinson's and Alzheimer's disease as illustrative examples. Hence, to analyze the potential cytotoxic effect of N-Rhomb exposure in the presence of microglia, we have synthesized Rhodamine B (RhB)-labeled α-Fe2O3 N-Rhomb, with lengths of 47 ± 10 nm and widths of 35 ± 8 nm. Internalization of RhB-labeled α-Fe2O3 N-Rhomb by microglia in the mouse brain was observed, and a dose-dependent increase in the cellular iron content as probed by cellular fluorescence was detected in cultured microglia after nanoparticle exposure. The cells maintained clear functional viability, exhibiting little to no cytotoxic effects after 24 and 48 hours at acceptable, physiological concentrations. Importantly, the nanoparticle exposure did not induce microglial cells to produce either tumor necrosis factor alpha (TNFα) or interleukin 1-beta (IL1β), two pro-inflammatory cytokines, nor did exposure stimulate the production of nitrites and reactive oxygen species (ROS), which are common indicators for the onset of inflammation. Finally, we propose that under the conditions of our experiments, i.e. in the presence of RhB labeled-α-Fe2O3 N-Rhomb maintaining concentrations of up to 100 μg mL−1 after 48 hours of incubation, the in vitro and in vivo internalization of RhB-labeled α-Fe2O3 N-Rhomb are likely to be clathrin-dependent, which represents a conventional mechanistic uptake route for most cells. Given the crucial role that microglia play in many neurological disorders, understanding the potential cytotoxic effects of these nanostructures is of fundamental importance if they are to be used in a therapeutic setting.


1995 ◽  
Vol 310 (2) ◽  
pp. 547-551 ◽  
Author(s):  
H Sato ◽  
K Fujiwara ◽  
J Sagara ◽  
S Bannai

The transport of cystine has been investigated in mouse peritoneal macrophages cultured in vitro. The transport activity for cystine was very low in freshly isolated macrophages but was potently induced during culture in the presence of bacterial lipopolysaccharide (LPS) at concentrations as low as 0.1 ng/ml. The transport activity for cystine was enhanced when the cells were incubated with tumour necrosis factor-alpha (TNF-alpha), but not with interferon-gamma (IFN-gamma) or interleukin-1. IFN-gamma was rather repressive in the induction of the activity by LPS or TNF-alpha. The transport activity for cystine induced by LPS has been characterized. Cystine was transported mainly by Na(+)-independent system and the uptake of cystine was inhibited by extracellular glutamate and homocysteate, but not by aspartate, indicating that the transport of cystine in macrophages treated with LPS is mediated by System xc-. Glutathione content of the macrophages increased when they were exposed to LPS, and this increase was, at least in part, attributable to the induced activity of the cystine transport.


2007 ◽  
Vol 15 (9) ◽  
pp. 1053-1060 ◽  
Author(s):  
A. Hennerbichler ◽  
F.T. Moutos ◽  
D. Hennerbichler ◽  
J.B. Weinberg ◽  
F. Guilak

2020 ◽  
Vol 10 (3) ◽  
pp. 458-463
Author(s):  
Nasim Dana ◽  
Golnaz Vaseghi ◽  
Shaghayegh Haghjooy Javanmard

Purpose : Although peroxisome proliferator-activated receptor γ (PPARγ) is known as a regulator of fatty acid storage, fat cell differentiation, glucose and lipid metabolism, recent studies show that PPARγ has anticancer effects. The mechanisms of PPARγ activation in melanoma cancer remain unclarified. Recently, increased TLR4 expression has been associated with the melanoma cancer progression. We investigated whether the anti-cancer effect of PPARγ is through regulating TLR4 signaling pathway. Methods: Mouse melanoma cells (B16F10) were treated in different groups: control, pioglitazone (1, 10, 100, 300 µmol/L), lipopolysaccharide (LPS) (5 µg/mL) and LPS + pioglitazone. In another experiment, they were treated with CLI-095 (1 μM), and after 1 hour pioglitazone was added and subsequently stimulated with LPS. MTT assay was performed to measure the cell viability in vitro. The expression of Tlr4, Myd88, Nf-κb genes were evaluated by quantitative reverse transcription PCR (qRT-PCR) in different groups. The concentration of tumor necrosis factor alpha and Interleukin 1 beta in the cell culture medium were measured by enzyme-linked immunosorbent assay (ELISA) kits. Results: We show that activation of PPARγ by its agonist, pioglitazone, reduces cell proliferation, Tlr-4, Myd-88, Nf-kb mRNA expression, and tumor necrosis factor-alpha (TNF-α) production but not interleukin-1 β (IL-1β) in B16F10 LPS–stimulated cells in vitro. Moreover, treatment of B16F10 cells with TLR4 inhibitor prior treatment with pioglitazone indicate that the anticancer effects of pioglitazone on melanoma cells was dependent on TLR4. Conclusion: The results indicate that pioglitazone has a beneficial protective effect against melanoma by affecting the TLR4 signaling pathway.


1996 ◽  
Vol 270 (1) ◽  
pp. H183-H193 ◽  
Author(s):  
R. M. Binns ◽  
S. T. Licence ◽  
A. A. Harrison ◽  
E. T. Keelan ◽  
M. K. Robinson ◽  
...  

The endothelial molecule E-selectin binds most leukocyte subsets in vitro. Yet its role in regulating the very different kinetics of inflammatory infiltration of different leukocyte subsets in vivo is unclear. The kinetics of E-selectin upregulation and polymorphonuclear leukocyte (PMN) and blood lymphocyte (PBL) localization in inflammation induced by interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF-alpha), phytohemagglutinin (PHA), and phorbol myristate acetate (PMA) were investigated in a well-established inbred pig trafficking model. They differed markedly both for these three labeled indicators of inflammation and in each of the four inflammatory processes. In each, E-selectin upregulation correlated with early PMN entry and later with PBL infiltration but was more protracted than both. The importance of E-selectin was confirmed by marked inhibition of PMN and PBL entry (up to > 60%) by F(ab')2 anti-E-selectin. Involvement of other molecules was illustrated by similar or greater inhibition with anti-CD18 F(ab')2. We conclude that, like CD18, E-selectin is necessary for most PMN and PBL infiltration but alone is insufficient, consistent with the involvement of several alternative multistep molecular mechanisms in this entry.


Sign in / Sign up

Export Citation Format

Share Document