scholarly journals Simplified measurement of intra-access pressure.

1998 ◽  
Vol 9 (2) ◽  
pp. 284-289
Author(s):  
A Besarab ◽  
S Frinak ◽  
R A Sherman ◽  
J Goldman ◽  
F Dumler ◽  
...  

The measurement of intra-access pressure (P[IA]) normalized by mean arterial BP (MAP) helps detect venous outlet stenosis and correlates with access blood flow. However, general use of P(IA)/MAP is limited by time and special equipment costs. Bernoulli's equation relates differences between P(IA) (recorded by an external transducer as PT) and the venous drip chamber pressure, PDC; at zero flow, the difference in height (deltaH) between the measuring sites and fluid density determines the pressure deltaPH = P(IA) - P(DC) Therefore, P(DC) and PT measurements were correlated at six different dialysis units, each using one of three different dialysis delivery systems machines. Both dynamic (i.e., with blood flow) and static pressures were measured. Changes in mean BP, zero calibration errors, and hydrostatic height between the transducer and drip chamber accounted for 90% of the variance in P(DC), with deltaPH = -1.6 + 0.74 deltaH (r = 0.88, P < 0.001). The major determinants of static P(IA)/MAP were access type and venous outflow abnormalities. In grafts, flow averaged 555 +/- 45 ml/min for P(IA)/MAP > 0.5 and 1229 +/- 112 ml/min for P(IA)/MAP < 0.5. DeltaPH varied from 9.4 to 17.4 mmHg among the six centers and was related to deltaH between the drip chamber and the armrest of the dialysis chair. Concordance between values of P(IA)/MAP calculated from PT and from P(DC) + deltaPH was excellent. It is concluded that static P(DC) measurements corrected by an appropriate deltaPH can be used to prospectively monitor hemodialysis access grafts for stenosis.

1996 ◽  
Vol 271 (2) ◽  
pp. F269-F274 ◽  
Author(s):  
C. A. Visscher ◽  
D. De Zeeuw ◽  
G. Navis ◽  
A. K. Van Zanten ◽  
P. E. De Jong ◽  
...  

We evaluated renal 131I-hippurate clearance (ERPFhip) as a measure of renal blood flow (RBF) in chronically instrumented conscious dogs. When adjusted for renal hippurate extraction (Ehip, 0.77 +/- 0.01) and hematocrit (Hct, 39.7 +/- 1%), calculated RBFhip (656 +/- 37 ml/min) markedly exceeded renal blood flow measured with renal artery blood flow probes (RBFprobe, 433 +/- 27 ml/min). The discrepancy could not be explained by flow probe calibration, because in vivo comparison of flow probe values with renal venous outflow showed only a slight underestimation of renal blood flow (slope 0.93, 95% confidence interval 0.89-0.97). Redistribution of hippurate from erythrocytes into renal venous plasma during or shortly after blood sampling led to an underestimation of Ehip by 4 +/- 1% and thus could only explain a small part of the difference. Extrarenal hippurate clearance was excluded, because the amount of 131I-hippurate cleared from plasma equaled that appearing in the urine (303 +/- 17 and 307 +/- 17 ml/min). Applying these corrections, we found that RBFhip still exceeded RBFprobe by 37 +/- 3%. These data indicate that renal blood flow measured by the hippurate clearance technique markedly overestimates true renal blood flow. Because other errors were excluded, a combination of sampling of nonrenal blood and intrarenal hippurate extraction from erythrocytes might play a role.


2017 ◽  
Vol 63 (5) ◽  
pp. 766-769
Author(s):  
Nikolay Agarkov ◽  
Pavel Tkachenko ◽  
Dmitriy Kicha ◽  
Vitaliy Aksenov ◽  
Aleksandr Ivanov ◽  
...  

Analysis of ultrasonic blood flow changes in uterine and ovarian arteries and veins in 92 patients with ovarian cancer and 87 patients with chronic salpingoophoritis has allowed to identify the leading differential diagnostic criteria, which include minimum diastolic blood flow velocity, resistance index, while fast hyperemia, the index of venous outflow diastolic index and index of peripheral resistance. Based on a selection of leading differential diagnostic criteria for ovarian cancer and chronic salpingoophoritis developed a network model of differentiation of these groups of patients, streamlining the differential diagnostic process


2005 ◽  
Vol 18 (6) ◽  
pp. 558-564 ◽  
Author(s):  
Sunanda J. Ram ◽  
Raja Nassar ◽  
Rashid Sharaf ◽  
Alberto Magnasco ◽  
Steven A. Jones ◽  
...  

2013 ◽  
Vol 2 (2) ◽  
Author(s):  
Oxana V. Semyachkina-Glushkovskaya ◽  
Vladislav V. Lychagov ◽  
Olga A. Bibikova ◽  
Igor A. Semyachkin-Glushkovskiy ◽  
Sergey S. Sindeev ◽  
...  

AbstractHemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the understanding of the nature of ICH. The aim of this study was to determine the particularities of alterations in arterial and venous cerebral circulation in hypertensive rats at different stages of stress-related development of ICH using three-dimensional Doppler optical coherence tomography (DOCT).Experiments were performed in mongrel adult rats. To induce ICH, hypertensive rats underwent stress (effect of severe sound, 120 dB during 2 h). To induce the renal hypertension (two kidneys, one clip) the rats were clipped at the left renal artery with a silver clip. Seven weeks after clipping, the hypertensive rats were used in the experiment. The monitoring of CBF was performed in anesthetized rats with fixed heads using a commercially available swept source OCT system (OCS1300SS; Thorlabs) in the masked period of ICH (4 h after stress) and during ICH (24 h after stress).It could be shown that in stressed rats, compared with non-stressed animals, the latent stage of stress-induced ICH (4 h after stress-off) is characterized by an increase in diameter of the superior sagittal vein with decrease in speed of the blood flow in the venous network, whereas no changes in the CBF in the arterial tree were found in this period. These facts suggest that the masked period of ICH is accompanied by decreasing venous outflow and the development of venous insufficiency. The incidence of ICH, 24 h after stress, is associated with progression of pathological alterations in cerebral venous circulation. All hypertensive rats with ICH demonstrated a greater increase in the diameter of the superior sagittal vein than stressed rats at the latent stage of ICH (in 2.5-fold,In summary, using DOCT we have shown that the latent stage of stress-induced ICH is characterized by a decrease in venous outflow. The incidence of ICH is associated with the progression of pathological alterations in cerebral venous circulation that is accompanied by a decrease in blood flow in the arterial tree. The evaluation of cerebral venous insufficiency is an important diagnostic approach for the prognosis of the risk of developing cerebral hypotension and ICH.


1992 ◽  
Vol 72 (6) ◽  
pp. 2292-2297 ◽  
Author(s):  
K. C. Beck ◽  
J. Vettermann ◽  
K. Rehder

To determine the cause of the difference in gas exchange between the prone and supine postures in dogs, gas exchange was assessed by the multiple inert gas elimination technique (MIGET) and distribution of pulmonary blood flow was determined using radioactively labeled microspheres in seven anesthetized paralyzed dogs. Each animal was studied in the prone and supine positions in random order while tidal volume and respiratory frequency were kept constant with mechanical ventilation. Mean arterial PO2 was significantly lower (P less than 0.01) in the supine [96 +/- 10 (SD) Torr] than in the prone (107 +/- 6 Torr) position, whereas arterial PCO2 was constant (38 Torr). The distribution of blood flow (Q) vs. ventilation-to-perfusion ratio obtained from MIGET was significantly wider (P less than 0.01) in the supine [ln SD(Q) = 0.75 +/- 0.26] than in the prone position [ln SD (Q) = 0.34 +/- 0.05]. Right-to-left pulmonary shunting was not significantly altered. The distribution of microspheres was more heterogeneous in the supine than in the prone position. The larger heterogeneity was due in part to dorsal-to-ventral gradients in Q in the supine position that were not present in the prone position (P less than 0.01). The decreased efficiency of oxygenation in the supine posture is caused by an increased ventilation-to-perfusion mismatch that accompanies an increase in the heterogeneity of Q distribution.


1986 ◽  
Vol 250 (5) ◽  
pp. H838-H845 ◽  
Author(s):  
S. D. House ◽  
P. C. Johnson

It has been suggested from whole organ studies that the viscosity of blood in skeletal muscle venules varies inversely with flow over physiological flow ranges. If this is the case, the hydrostatic pressure gradient in venules should change less than flow as flow is altered. To test this hypothesis, pressure in venules of cat sartorius muscle was measured during stepwise arterial pressure reduction to 20 mmHg. Large vein pressure remained constant at about 5 mmHg. Average pressures in the large venules (40–185 microns) ranged from 13.6 to 10.0 mmHg. The difference between pressure in these venules and large vein pressure fell in proportion to the reduction in blood pressure and blood flow. Pressures in the smallest venules studied (25 microns) averaged 19.7 +/- 6.2 (SD) mmHg. The pressure difference between the smallest venules and the large vein fell less than the arteriovenous pressure difference or blood flow when arterial pressure was reduced. During reactive hyperemia the pressure gradient between the smallest venules and the large vein rose proportionately less than blood flow. The stability of pressure in the smallest venules is consistent with the hypothesis that blood viscosity varies inversely with flow rate.


2008 ◽  
Vol 7 (5-1) ◽  
pp. 270-275
Author(s):  
M. V. Napriyenko ◽  
V. Yu. Oknin ◽  
A. G. Sazonova ◽  
L. M. Kudayeva

The aim of this investigation is to study the effect of BTA on the cerebral blood flow in patients with chronic daily headache. The analysis of Doppler ultrasonography and transcranial Dopplergraphy findings has shown the following: after the treatment 34% of the patients had no extravasal effect and in 66% of the patients it became moderate and after the treatment normal venous outflow was found in 58% of the patients . The results of the pilot study demonstrate the effect of BT-A injection on the cerebral blood flow by means of optimizing both the arterial blood flow and the venous outflow from the cavity of the skull.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kunyang Bao ◽  
Chao Liu ◽  
Jin Li ◽  
Xiang Liu ◽  
Wenzhang Luo ◽  
...  

In order to analyze the change characteristics of blood flow field in cerebral aneurysms before and after stent implantation, this study first constructed an optimized iterative reconstruction algorithm to reconstruct CT images of patients with cerebral aneurysms and used it to solve the problem of image sharpness. In addition, backprojection image reconstruction algorithm and Fourier transform analytic method were introduced. According to the CT images of cerebral arteries of patients, the lesions were presented in a three-dimensional and visual way through the reconstructed three-dimensional images, thus achieving the effects of simulation and simulation. The results showed that the sensitivity, specificity, and accuracy of the optimized iterative reconstruction algorithm were 90.78%, 83.27%, and 94.82%, which were significantly higher than those of the backprojection image reconstruction algorithm and Fourier transform analysis method, and the difference was statistically significant ( P < 0.05 ). Before operation, the blood flow velocity in the neck of aneurysm was 7.35 × 10−2 m/s, the exit velocity was 1.51 × 10−1 m/s, and the maximum velocity appeared in the upstream part of the exit. After passing through the aneurysm, the blood flow velocity began to decrease gradually, forming a vortex at the top of the tumor. After stent implantation, the neck and outlet velocities of cerebral aneurysm were 9.352 × 10−2 m/s and 1.897 × 10−2 m/s, respectively. The velocity of blood flow decreased after entering the aneurysm, and there was no vortex at the top of the aneurysm. Among the outlet velocities of arterial blood vessels, the velocity before stent implantation was significantly lower than that after stent implantation, and the difference was statistically significant ( P < 0.05 ). Compared with prestent, the shear force distribution on the wall of cerebral aneurysm showed a significant decrease, and the difference was statistically significant ( P < 0.05 ). To sum up, pelvic floor ultrasound based on hybrid iterative reconstruction algorithm has high accuracy in diagnosing the changes of blood flow field in cerebral aneurysms. The application of CT images in the diagnosis of cerebral aneurysms can objectively provide imaging data for clinical practice and has high application value.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sumit R Monu ◽  
Mani Maheshwari ◽  
Hong Wang ◽  
Ed Peterson ◽  
Oscar Carretero

In obesity, renal damage is caused by increase in renal blood flow (RBF), glomerular capillary pressure (P GC ), and single nephron glomerular filtration rate but the mechanism behind this alteration in renal hemodynamics is unclear. P GC is controlled mainly by the afferent arteriole (Af-Art) resistance. Af-Art resistance is regulated by mechanism similar to that in other arterioles and in addition, it is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to an increase in sodium chloride (NaCl) in the macula densa, via sodium–potassium-2-chloride cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation and is mediated by connecting tubule via epithelial sodium channel (ENaC). CTGF is blocked by the ENaC inhibitor benzamil. Attenuation of TGF reduces Af-Art resistance and allows systemic pressure to get transmitted to the glomerulus that causes glomerular barotrauma/damage. In the current study, we tested the hypothesis that TGF is attenuated in obesity and that CTGF contributes to this effect. We used Zucker obese rats (ZOR) while Zucker lean rats (ZLR) served as controls. We performed in-vivo renal micropuncture of individual rat nephrons while measuring stop-flow pressure (P SF ), an index of P GC. TGF response was measured as a decrease in P SF induced by changing the rate of late proximal perfusion from 0 to 40nl/min in stepwise manner.CTGF was calculated as the difference of P SF value between vehicle and benzamil treatment, at each perfusion rate. Maximal TGF response was significantly less in ZOR (6.16 ± 0.52 mmHg) when compared to the ZLR (8.35 ± 1.00mmHg), p<0.05 , indicating TGF resetting in the ZOR. CTGF was significantly higher in ZOR (6.33±1.95 mmHg) when compared to ZLR (1.38±0.89 mmHg), p<0.05 . When CTGF was inhibited with the ENaC blocker Benzamil (1μM), maximum P SF decrease was 12.30±1.72 mmHg in ZOR and 10.60 ± 1.73 mmHg in ZLR, indicating that blockade of CTGF restored TGF response in ZOR. These observations led us to conclude that TGF is reset in ZOR and that enhanced CTGF contributes to this effect. Increase in CTGF may explain higher renal blood flow, increased P GC and higher glomerular damage in obesity.


Sign in / Sign up

Export Citation Format

Share Document