scholarly journals A Topic Modelling Approach to Nuclear Energy Issue Frames in News Articles and Media Partisanship

2017 ◽  
Vol 15 (3) ◽  
pp. 45-85
Author(s):  
이태준
2019 ◽  
Vol 53 (1) ◽  
pp. 38-39
Author(s):  
Anjie Fang

Recently, political events, such as elections, have raised a lot of discussions on social media networks, in particular, Twitter. This brings new opportunities for social scientists to address social science tasks, such as understanding what communities said or identifying whether a community has an influence on another. However, identifying these communities and extracting what they said from social media data are challenging and non-trivial tasks. We aim to make progress towards understanding 'who' (i.e. communities) said 'what' (i.e. discussed topics) and 'when' (i.e. time) during political events on Twitter. While identifying the 'who' can benefit from Twitter user community classification approaches, 'what' they said and 'when' can be effectively addressed on Twitter by extracting their discussed topics using topic modelling approaches that also account for the importance of time on Twitter. To evaluate the quality of these topics, it is necessary to investigate how coherent these topics are to humans. Accordingly, we propose a series of approaches in this thesis. First, we investigate how to effectively evaluate the coherence of the topics generated using a topic modelling approach. The topic coherence metric evaluates the topical coherence by examining the semantic similarity among words in a topic. We argue that the semantic similarity of words in tweets can be effectively captured by using word embeddings trained using a Twitter background dataset. Through a user study, we demonstrate that our proposed word embedding-based topic coherence metric can assess the coherence of topics like humans [1, 2]. In addition, inspired by the precision at k metric, we propose to evaluate the coherence of a topic model (containing many topics) by averaging the top-ranked topics within the topic model [3]. Our proposed metrics can not only evaluate the coherence of topics and topic models, but also can help users to choose the most coherent topics. Second, we aim to extract topics with a high coherence from Twitter data. Such topics can be easily interpreted by humans and they can assist to examine 'what' has been discussed and 'when'. Indeed, we argue that topics can be discussed in different time periods (see [4]) and therefore can be effectively identified and distinguished by considering their time periods. Hence, we propose an effective time-sensitive topic modelling approach by integrating the time dimension of tweets (i.e. 'when') [5]. We show that the time dimension helps to generate topics with a high coherence. Hence, we argue that 'what' has been discussed and 'when' can be effectively addressed by our proposed time-sensitive topic modelling approach. Next, to identify 'who' participated in the topic discussions, we propose approaches to identify the community affiliations of Twitter users, including automatic ground-truth generation approaches and a user community classification approach. We show that the mentioned hashtags and entities in the users' tweets can indicate which community a Twitter user belongs to. Hence, we argue that they can be used to generate the ground-truth data for classifying users into communities. On the other hand, we argue that different communities favour different topic discussions and their community affiliations can be identified by leveraging the discussed topics. Accordingly, we propose a Topic-Based Naive Bayes (TBNB) classification approach to classify Twitter users based on their words and discussed topics [6]. We demonstrate that our TBNB classifier together with the ground-truth generation approaches can effectively identify the community affiliations of Twitter users. Finally, to show the generalisation of our approaches, we apply our approaches to analyse 3.6 million tweets related to US Election 2016 on Twitter [7]. We show that our TBNB approach can effectively identify the 'who', i.e. classify Twitter users into communities. To investigate 'what' these communities have discussed, we apply our time-sensitive topic modelling approach to extract coherent topics. We finally analyse the community-related topics evaluated and selected using our proposed topic coherence metrics. Overall, we contribute to provide effective approaches to assist social scientists towards analysing political events on Twitter. These approaches include topic coherence metrics, a time-sensitive topic modelling approach and approaches for classifying the community affiliations of Twitter users. Together they make progress to study and understand the connections and dynamics among communities on Twitter. Supervisors : Iadh Ounis, Craig Macdonald, Philip Habel The thesis is available at http://theses.gla.ac.uk/41135/


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Claus Boye Asmussen ◽  
Charles Møller

Abstract Manual exploratory literature reviews should be a thing of the past, as technology and development of machine learning methods have matured. The learning curve for using machine learning methods is rapidly declining, enabling new possibilities for all researchers. A framework is presented on how to use topic modelling on a large collection of papers for an exploratory literature review and how that can be used for a full literature review. The aim of the paper is to enable the use of topic modelling for researchers by presenting a step-by-step framework on a case and sharing a code template. The framework consists of three steps; pre-processing, topic modelling, and post-processing, where the topic model Latent Dirichlet Allocation is used. The framework enables huge amounts of papers to be reviewed in a transparent, reliable, faster, and reproducible way.


Mindfulness ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 1474-1488 ◽  
Author(s):  
Ying Hwa Kee ◽  
Chunxiao Li ◽  
Leng Chee Kong ◽  
Crystal Jieyi Tang ◽  
Kuo-Liang Chuang

Author(s):  
Almed Hamzah ◽  
Ahmad Fathan Hidayatullah ◽  
Andhika Giri Persada

This paper reports a map of identified topics from mobile learning research. Mobile learning is an emerging paradigm in an educational context as its adoption in an educational institution is growing rapidly. The students are already using and familiar with it.  The publications from the last ten years were examined. Two approaches were employed to identify themes, i.e. word cloud and Latent Dirichlet Allocation. The result shows that mobile learning research is shifting from the development into optimization paradigm. This research is beneficial for mobile learning literature to inform the researcher and practitioner in the mobile learning area in terms of research topic trend and therefore consider it as a basis for designing mobile learning system in the future.


Sign in / Sign up

Export Citation Format

Share Document