Study on Morphometric Features of Coronal Suture Along with it Absence and Craniosynostosis

2021 ◽  
Vol 9 (4) ◽  
pp. 8151-8155
Author(s):  
Khaleel N ◽  
◽  
Angadi A V ◽  
Muralidhar P S ◽  
Shabiya M ◽  
...  

Background: Cranial sutures are syndesmosis between the cranial bones. The coronal suture is oblique in direction and extends between the frontal and the parietal bones. Craniosynostosis is a rare birth defect that occurs when the coronal suture in the skull fuses prematurely, but the brain continues to grow and develop. This leads to a misshapen head. There are a number of forms of this defect, such as coronal, sagittal, lambdoid, and metopic. Materials and Methods: Total 500 skulls were used for study, coronal suture length measured by thread method, distance between Nasion to bregma and midsupraorbital rim to coronal suture were measured. For finding skull with absence of coronal, sagittal, lambdoid, and metopic suture, we examined many skulls during routine osteology classes of Medical, Dental and other medical sciences students. Around 500 skull observed and we find only one skull with absence of left coronal suture completely. Results: The length of coronal suture was 24.8+1.4cm length, the distance between nasion to bregma was 126.7 +10.25 mm and Midsupraorbital rim to cranial suture was 102.76+8.64mm We have found only one skull with absence of coronal suture. Some of the skulls shows partly fusion of sagittal, coronal sutures. The skull with complete absence of coronal suture showing the features of other sutures clearly and right side of coronal suture is showing the complete suture. The skull was not damaged and it is in perfect condition which was using by students for their osteology study. Conclusion: We found the skull with absence of left coronal suture, which may resulted due to craniosynostosis. It may be due to hot climate in India also might be resulted for absence of suture. KEY WORDS: Birth defect, Skull, Coronal suture, Craniosynostosis.

2020 ◽  
Author(s):  
Borja Esteve-Altava ◽  
Fabio Barteri ◽  
Xavier Farré ◽  
Gerard Muntané ◽  
Juan Francisco Pastor ◽  
...  

ABSTRACTCranial sutures are growth and stress diffusion sites that connect the bones protecting the brain. The closure of cranial suture is a key feature of mammalian late development and evolution, which can also lead to head malformations when it occurs prematurely (craniosynostosis). To unveil the phenotypic and genetic causes of suture closure in evolution, we examined 48 mammalian species searching for (i) causal links between suture patency, brain size, and diet using phylogenetic path analysis; and (ii) instances of genome-phenome convergence amino acid substitutions. Here we show that brain size and the anteroposterior order of ossification of the skull are the two main causes of sutures patency in evolution. We also identified three novel candidate genes for suture closure in evolution (HRNR, KIAA1549, and TTN), which have never been reported in clinical studies of craniosynostosis. Our results suggest that different genetic pathways underlie cranial suture closure in evolution and disease.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Camilla S Teng ◽  
Man-chun Ting ◽  
D'Juan T Farmer ◽  
Mia Brockop ◽  
Robert E Maxson ◽  
...  

Cranial sutures separate the skull bones and house stem cells for bone growth and repair. In Saethre-Chotzen syndrome, mutations in TCF12 or TWIST1 ablate a specific suture, the coronal. This suture forms at a neural-crest/mesoderm interface in mammals and a mesoderm/mesoderm interface in zebrafish. Despite this difference, we show that combinatorial loss of TCF12 and TWIST1 homologs in zebrafish also results in specific loss of the coronal suture. Sequential bone staining reveals an initial, directional acceleration of bone production in the mutant skull, with subsequent localized stalling of bone growth prefiguring coronal suture loss. Mouse genetics further reveal requirements for Twist1 and Tcf12 in both the frontal and parietal bones for suture patency, and to maintain putative progenitors in the coronal region. These findings reveal conservation of coronal suture formation despite evolutionary shifts in embryonic origins, and suggest that the coronal suture might be especially susceptible to imbalances in progenitor maintenance and osteoblast differentiation.


2021 ◽  
Author(s):  
D’Juan T. Farmer ◽  
Hana Mlcochova ◽  
Yan Zhou ◽  
Nils Koelling ◽  
Guanlin Wang ◽  
...  

AbstractSutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. To uncover the cellular diversity within sutures, we generated single-cell transcriptomes and performed extensive expression validation of the embryonic murine coronal suture. We identify Erg and Pthlh as markers of osteogenic progenitors in sutures, and distinct pre-osteoblast signatures between the bone fronts and periosteum. In the ectocranial layers above the suture, we observe a ligament-like population spanning the frontal and parietal bones. In the dura mater underlying the suture, we detect a chondrocyte-like signature potentially linked to cartilage formation under pathological conditions. Genes mutated in coronal synostosis are preferentially expressed in proliferative osteogenic cells, as well as meningeal layers, suggesting discrete cell types that may be altered in different syndromes. This single-cell atlas provides a resource for understanding development of the coronal suture, the suture most commonly fused in monogenic craniosynostosis.


2021 ◽  
Author(s):  
D'Juan Farmer ◽  
Hana Mlcochova ◽  
Yan Zhou ◽  
Nils Koelling ◽  
Guanlin Wang ◽  
...  

Abstract Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. To uncover the cellular diversity within sutures, we generated single-cell transcriptomes and performed extensive expression validation of the embryonic murine coronal suture. We identify Erg and Pthlh as markers of osteogenic progenitors in sutures, and distinct pre-osteoblast signatures between the bone fronts and periosteum. In the ectocranial layers above the suture, we observe a ligament-like population spanning the frontal and parietal bones. In the dura mater underlying the suture, we detect a chondrocyte-like signature potentially linked to cartilage formation under pathological conditions. Genes mutated in coronal synostosis are preferentially expressed in proliferative osteogenic cells, as well as meningeal layers, suggesting discrete cell types that may be altered in different syndromes. This single-cell atlas provides a resource for understanding development of the coronal suture, the suture most commonly fused in monogenic craniosynostosis.


2019 ◽  
Vol 28 (15) ◽  
pp. 2501-2513 ◽  
Author(s):  
Jacqueline A C Goos ◽  
Walter K Vogel ◽  
Hana Mlcochova ◽  
Christopher J Millard ◽  
Elahe Esfandiari ◽  
...  

Abstract Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4–MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4–MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.


2014 ◽  
Vol 5 (4) ◽  
pp. 84-88 ◽  
Author(s):  
Maryna Alfaouri-Kornieieva ◽  
Azmy M Al-Hadidi

Background: Recent clinical trials have shown a rising trend of stroke in Asian population. Approximately 20% strokes of total occur at the vertebrobasilar basin that supplies the occipital lobes of the brain, the cerebellum, and the brainstem. The anatomical features and variability of the third segment of the vertebral artery (VA) in Asians are analyzed in this study. Methods: A prospective cohort study of 68 consecutive Asian patients underwent MRA examination for head and neck in the Department of Radiology of Hospital of University of Jordan from 1.10.2011 to 30.04.2012. The 116 VA were analyzed on the obtained angiograms. Results: The third segment (V3) of the VA was studied according to its conventional division into vertical, horizontal, and oblique parts. The mean outer diameter of the V3 varied up 3.18 ± 0.73 to 4.28 ± 1.08 mm. The parameter prevailed on the left in 91% cases and was greater in males, than in females. The distal loop of the VA projected downward in 26 cases on the right (78%) and in 28 cases on the left (74%). The tortuosity of loop?formations of V3 was evaluated subject to angles between their ascending and descending bends. Conclusion: In comparison with other ethnic groups, the V3 of the VA in Asians has lesser outer diameter, especially along its oblique part; the zero?distance between the occipital bone and horizontal segment of VA occurs more often (up to 26%); the Lang’s III type of V3 variability is the most common in Asians. DOI: http://dx.doi.org/10.3126/ajms.v5i4.6150 Asian Journal of Medical Sciences 2014 Vol.5(4); 84-88


2019 ◽  
Author(s):  
Ismael Palacios-Garcia ◽  
Francisco J. Parada

Cognitive process and associated states such as wellbeing are embodied, in a process of phylogenetic and ontogenic interdependencies, encompassing an organism’s both internal and external environments. Diurnal mammals’ physiology has been enslaved by the day/night cycle, imposed to planet Earth from the cosmos. Mammals’ physiology is furthermore entangled to the micro-dynamics of small organisms, imposed onto the body through the development of a symbiotic relationship unfolding throughout ontogeny and phylogeny. Therefore, adequate scientific study of human behavior will include as many levels as possible: socio-cultural, psychological, microbiological, etc. The brain-gut-microbiota topic represents a fascinating opportunity to expand our knowledge about cognition, mental health, and life in general. It is important to frame this research topic from multiple perspectives including biological/medical sciences, public policy, architecture, urbanism, and psychology. Furthermore, recent philosophical and epistemological advances, under the 4E-cognition framework, will help the integration of evidence, providing new insights and novel hypotheses.


Author(s):  
Faisal Rehman ◽  
◽  
Syed Sheeraz Ali ◽  
Hamadullah Panhwar ◽  
Dr. Akhtar Hussain Phul ◽  
...  

In the medical era the Brain tumor is one of the most important research areas in the field of medical sciences. Researcher are trying to find the reliable and cost effective medical equipment’s for the cancer and its type for the diagnosed, especially tumor has deferent kinds but the major two type are discussed in this research paper. Which are the benign and Pre-Malignant, this research work is proposed for these factors such as the accuracy of the MRI image for the tumor identification and actual placing were taken into consideration. In this study, an algorithm is proposed to detect the brain tumor from magnetic resonance image (MRI) data simple. As enhance the image quality for the easiness the tumor treatments and diagnosed for the patients. The proposed algorithm enhances the MR image quality and detects the Brain tumor which helps the Physician to diagnose the tumor easily. As well this algorithm automatically calculates the area of tumor, size and location of the tumor where it is present for diagnostic the Patient.


2018 ◽  
Vol 9 (6) ◽  
pp. 40-44
Author(s):  
Rajeev Mukhia ◽  
Bhawani Prasad Powar

Background: Thyroid gland is one of the organs of interest for researchers since a long time. Though, detailed study about adult thyroid gland is there in the literature but thyroid gland at different stages in the foetal period is far less available.Aims and Objective: To find out the morphological and morphometric features on the development of foetal thyroid gland in relation with different gestational weeks.Materials and Methods: The study was carried in the Department of Anatomy, Manipal College of Medical Sciences, Pokhara, Nepal, on 40 human foetuses of known gestational age. The midline dissection of the neck was done to expose the thyroid gland. The shape and measurements like length, breadth and thickness of both lobe of the gland were noted.Results: The mean values of all parameters by gestational age were calculated. In the present study, the weight of foetuses showed gradual increase from 10th week to 38th weeks of gestation. In the normally developing foetuses the thyroid gland dimension and its weight also increases with increase gestational age.Conclusion: There was no more difference between the dimension of right and left lobe of thyroid gland. The study provides morphological and morphometric knowledge on the development of foetal thyroid gland from 10th week to 38th weeks of gestation. The knowledge of thyroid gland weight and dimension and body weight in relation to the gestational age might be helpful to judge the thyroid structure in preterm babies.Asian Journal of Medical Sciences Vol.9(6) 2018 40-44


Sign in / Sign up

Export Citation Format

Share Document