scholarly journals Morphological differences between genetic lineages of the peregrine earthworm : Aporrectodea caliginosa (Savigny, 1826)

2021 ◽  
Vol 67 (3) ◽  
pp. 235-246
Author(s):  
Sergei V. Shekhovtsov ◽  
Sergei A. Ermolov ◽  
Tatiana V. Poluboyarova ◽  
Maria N. Kim-Kashmenskaya ◽  
Yevgeniy A. Derzhinsky ◽  
...  

Aporrectodea caliginosa is a universally distributed and highly abundant peregrine earthworm that is the object of many ecological and ecotoxicological studies. Molecular phylogenetic analysis suggested that A. caliginosa consists of three highly diverged genetic lineages. In this study, we investigated morphological diversity within a sample of these three lineages from Belarus. We detected a variety of forms with different degrees of pigmentation and a shift in the clitellum position. The three genetic lineages of A. caliginosa demonstrated different propensity to particular morphological variants, including size, colour, and the clitellum position, yet no character could be used to distinguish among the lineages with sufficient accuracy. Thus, our results suggest that identification of the genetic lineage should be recommended for ecological studies involving A. caliginosa to account for possible differences between them.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naoto Jimi ◽  
Shinta Fujimoto ◽  
Mami Takehara ◽  
Satoshi Imura

AbstractThe phylum Annelida exhibits high morphological diversity coupled with its extensive ecological diversity, and the process of its evolution has been an attractive research subject for many researchers. Its representatives are also extensively studied in fields of ecology and developmental biology and important in many other biology related disciplines. The study of biomineralisation is one of them. Some annelid groups are well known to form calcified tubes but other forms of biomineralisation are also known. Herein, we report a new interstitial annelid species with black spicules, Thoracophelia minuta sp. nov., from Yoichi, Hokkaido, Japan. Spicules are minute calcium carbonate inclusions found across the body and in this new species, numerous black rod-like inclusions of calcium-rich composition are distributed in the coelomic cavity. The new species can be distinguished from other known species of the genus by these conspicuous spicules, shape of branchiae and body formula. Further, the new species’ body size is apparently smaller than its congeners. Based on our molecular phylogenetic analysis using 18S and 28S sequences, we discuss the evolutionary significance of the new species’ spicules and also the species' progenetic origin.


2006 ◽  
Vol 41 (2) ◽  
pp. 436-444 ◽  
Author(s):  
Jared M. Latiolais ◽  
Michael S. Taylor ◽  
Kaustuv Roy ◽  
Michael E. Hellberg

Plant Disease ◽  
2021 ◽  
Author(s):  
Joseph DeShields ◽  
Achala KC

In a recent survey of postharvest rot pathogens in European pear in Southern Oregon, Alternaria spp. were frequently isolated from orchard samples of pear flowers and fruits. Morphological differences were observed within the isolated cultures. A preliminary NCBI BLAST search analysis using sequences of the ATPase locus across 94 isolates of Alternaria spp. obtained from pear fruit rots, revealed three major Alternaria sections, sect. Alternata, sect. Infectoriae, and sect. Ulocladioides. Thirteen isolates were selected based on their genetic and morphological diversity across three Alternaria sections and were subjected to multilocus phylogenetic analysis using sequences from plasma membrane ATPase, calmodulin, and Alt a1 loci. Within section Alternata, four A. arborescens isolates and one A. destruens isolate were identified; within sections Infectoriae and Ulocladioides, one A. rosae isolate and two A. botrytis isolates were identified, respectively. The remaining five isolates could not be identified based on the available sequences for the three loci used in this study. In addition to the phylogenetic analysis, pathogenicity assays revealed differential responses to these isolates on four pear cultivars Anjou, Bartlett, Comice, and Bosc. Inoculation of isolates within Alternaria sect. Alternata resulted in fruit lesions across all cultivars with Bosc being significantly susceptible (p<0.0001). Isolates within Alternaria sect. Ulocladioides caused rots on Anjou and Bosc, while isolates within Alternaria sect. Infectoriae developed rots on Bosc only. This study suggests that there is differential susceptibility of pear cultivars to Alternaria rots and the severity of postharvest rot depends on the type of Alternaria spp. and cultivar predominant in a region.


2015 ◽  
Vol 60 (3) ◽  
Author(s):  
Joanna Hildebrand ◽  
Eric E. Pulis ◽  
Vasyl. V. Tkach

AbstractLyperosomum sarothrurae Baer, 1959 is a rare dicrocoeliid described based on a single specimen from Belgian Congo, now Democratic Republic of the Congo, and never reported again. The original description lacked several important details of the species morphology. This work provides morphological redescription of Lyp. sarothrurae based on specimens from Kibale National Park, Uganda which is about 200 kilometres from the type locality. Results of re-examination of the holotype are also provided. Morphology of Lyp. sarothrurae shows some characteristics intermediate between those of the species rich genus Lyperosomum Looss, 1899 and Megacetabulum Oshmarin, 1964 that includes only 3 species. Due to the lack of clear morphological differences between the two genera, Megacetabulum is considered here as a junior synonym of Lyperosomum. Molecular phylogenetic analysis including Lyp. sarothrurae and all currently available partial sequences of the nuclear ribosomal 28S RNA gene of dicrocoeliid species is also included and its results are discussed


2016 ◽  
Vol 85 (3) ◽  
pp. 337-359 ◽  
Author(s):  
Iva Njunjić ◽  
Michel Perreau ◽  
Kasper Hendriks ◽  
Menno Schilthuizen ◽  
Louis Deharveng

The subtribe Anthroherponina form an iconic group of obligate cave beetles, typical representatives of the Dinaric subterranean fauna, which is considered to be the richest in the world. Phylogenetic studies within this subtribe are scarce and based only on morphological characters, which, due to troglomorphic convergence, are frequently unreliable. Moreover, morphological stasis and morphological polymorphism make classification of taxa difficult. To test if characters that have traditionally been accepted as informative for Anthroherponina classification are indeed reliable, we evaluated the monophyly of the most speciesrich genus of this subtribe - Anthroherpon Reitter, 1889. Our study, based on a molecular phylogenetic analysis of fragments of the 18S, 28S, and COI (both 5’ and 3’ end) loci revealed that the genus Anthroherpon as conventionally defined is polyphyletic. To resolve this polyphyly, we defined one new additional genus, Graciliella n. gen., for which we then examined the intrageneric diversity using molecular and morphometric approaches. Molecular phylogenetic analysis of two COI mitochondrial gene fragments revealed the presence of four species inside Graciliella n. gen., including two new species, which we here describe as G. kosovaci n. sp. and G. ozimeci n. sp. To analyze interspecific morphological differences within Graciliella we performed a discriminant analysis based on 40 linear morphometric measurements. The results showed that differences between species and subspecies inside Graciliella, however subtle they may seem, are measurable and reproducible. All species of the genus are briefly diagnosed, an identification key is proposed and a distribution map of all taxa of Graciliella is provided.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1190
Author(s):  
Yuqi Huang ◽  
Minghao Sun ◽  
Lenan Zhuang ◽  
Jin He

Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.


2003 ◽  
Vol 60 (3) ◽  
pp. 533-568 ◽  
Author(s):  
J. C. MANNING ◽  
P. GOLDBLATT ◽  
M. F. FAY

A revised generic synopsis of sub-Saharan Hyacinthaceae is presented, based on a molecular phylogenetic analysis of the family. Generic rank is accorded only to reciprocally monophyletic clades that can be distinguished by recognizable morphological discontinuities, thereby permitting an appropriate generic assignment of species not included in the analysis. Three subfamilies are recognized within the region. Subfamily Ornithogaloideae, characterized by flattened or angular seeds with tightly adhering testa, is considered to include the single genus Ornithogalum, which is expanded to include the genera Albuca, Dipcadi, Galtonia, Neopatersonia and Pseudogaltonia. Recognizing any of these segregates at generic level renders the genus Ornithogalum polyphyletic, while subdivision of Ornithogalum into smaller, morphologically distinguishable segregates in order to preserve the monophyly of each is not possible. Subfamily Urgineoideae, characterized by flattened or winged seeds with brittle, loosely adhering testa, comprises the two mainland African genera Bowiea and Drimia. The latter is well circumscribed by its deciduous, short-lived perianth and includes the previously recognized genera Litanthus, Rhadamanthus, Schizobasis and Tenicroa. The monotypic Madagascan Igidia is provisionally included in the subfamily as a third genus on the basis of its seeds, pending molecular confirmation of its relationships. Subfamily Hyacinthoideae resolves into three clades, distinguished as tribes Hyacintheae (strictly northern hemisphere and not treated further), Massonieae and Pseudoprospereae tribus nov. Full descriptions and a key to their identification are provided for all genera. New combinations reflecting the generic circumscriptions adopted here are made for most African and all Indian and Madagascan species.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 302
Author(s):  
Malik Sallam ◽  
Azmi Mahafzah

The rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is manifested by the emergence of an ever-growing pool of genetic lineages. The aim of this study was to analyze the genetic variability of SARS-CoV-2 in Jordan, with a special focus on the UK variant of concern. A total of 579 SARS-CoV-2 sequences collected in Jordan were subjected to maximum likelihood and Bayesian phylogenetic analysis. Genetic lineage assignment was undertaken using the Pango system. Amino acid substitutions were investigated using the Protein Variation Effect Analyzer (PROVEAN) tool. A total of 19 different SARS-CoV-2 genetic lineages were detected, with the most frequent being the first Jordan lineage (B.1.1.312), first detected in August 2020 (n = 424, 73.2%). This was followed by the second Jordan lineage (B.1.36.10), first detected in September 2020 (n = 62, 10.7%), and the UK variant of concern (B.1.1.7; n = 36, 6.2%). In the spike gene region, the molecular signature for B.1.1.312 was the non-synonymous mutation A24432T resulting in a deleterious amino acid substitution (Q957L), while the molecular signature for B.1.36.10 was the synonymous mutation C22444T. Bayesian analysis revealed that the UK variant of concern (B.1.1.7) was introduced into Jordan in late November 2020 (mean estimate); four weeks earlier than its official reporting in the country. In Jordan, an exponential increase in COVID-19 cases due to B.1.1.7 lineage coincided with the new year 2021. The highest proportion of phylogenetic clustering was detected for the B.1.1.7 lineage. The amino acid substitution D614G in the spike glycoprotein was exclusively present in the country from July 2020 onwards. Two Jordanian lineages dominated infections in the country, with continuous introduction/emergence of new lineages. In Jordan, the rapid spread of the UK variant of concern should be monitored closely. The spread of SARS-CoV-2 mutants appeared to be related to the founder effect; nevertheless, the biological impact of certain mutations should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document