scholarly journals RISKS OF THE PROJECT «MANAGEMENT SOLUTIONS FOR DIESEL FUEL DELIVERY TO THE MINES»

Author(s):  
V.V. Olizarenko ◽  
A.A. Zubkov ◽  
A.B. Allaberdin ◽  
K.V. Vazhdaev ◽  
M.V. Laptev
Transport ◽  
2015 ◽  
Vol 31 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Raimondas Kreivaitis

This paper presents a comparative experimental study for determining the effect of ethanol on functionality of a high pressure pump of the common rail fuel injection system. For experimental durability tests were prepared two identical fuel injection systems, which were mounted on a test bed for a fuel injection pump. One of the fuel injection systems was feed with diesel fuel; other fuel injection system was fuelled with ethanol–diesel fuel blend. A blend with 12% v/v ethanol and 88% v/v diesel fuel and low sulphur diesel fuel as a reference fuel were used in this study. To determine the effect of ethanol on the durability of the high pressure pump total fuel delivery performance and surface roughness of pump element were measured prior and after the test. Results show that the use of the ethanol–diesel blend tested produced a negative effect on the durability of the high pressure fuel pump. The wear of plungers and barrels when using ethanol–diesel fuel blend caused a decrease in fuel delivery up to 30% after 100 h of operation.


1963 ◽  
Vol 6 (11) ◽  
pp. 915-916
Author(s):  
B. N. Fainleib ◽  
L. A. Klochev

2017 ◽  
Vol 16 (3) ◽  
pp. 225-231 ◽  
Author(s):  
D. G. Hershan

Computational researches the effect of composition of fuel containing butanol on working process parameters of 4ЧН 11/12,5 diesel engine on the external speed characteristic have been conducted. Nominal power is 140 kW at engine speed 2300 min–1. The engine is equipped with gas turbine pressure charging with intercooling of charging air, accumulator-type fuel-handling system. Calculations of the working process have been made in accordance with the developed computer program and models. Investigations have been carried out in two stages: without any changes in regulation of fuel-handling system and with cyclic fuel delivery that ensure such value of excess air factor at various operational modes which corresponds to the operation with diesel fuel. All the obtained results have been analyzed in the paper. The paper shows changes in mean indicated pressure, specific indicated fuel consumption, indicated efficiency, specific nitrogen oxides emissions for various modes in question while using 5, 10, 15, 20, 25 and 30 % mixture of diesel fuel with butanol. Dependences of parameters pertaining to diesel operation have been determined according to external speed characteristic for various mixtures and the obtained data make it possible to justify parameters of the fuel-handling system. It has been recommended to use a diesel fuel-butanol mixture containing 15 % of butanol without any changes in regulating and design engine parameters. It has been revealed that in order to improve parameters of the engine operational process mixture composition must be changed while changing the operational mode. An injector nozzle with a compound needle for the fuel-handling system has been developed and it allows to change fuel composition according to engine operational mode.


Author(s):  
Mahmoudreza Mirmohammadsadeghi ◽  
Hua Zhao ◽  
Akira Ito

Ever growing population and increased vehicles have resulted in higher atmospheric concentration of the greenhouse gases, such as carbon dioxide and methane, thus increasing our planet’s average temperature leading to irreversible climate changes, which has led to increasingly demanding and stricter legislations on pollutant emission and CO2, as well as fuel economy targets for the automotive industry. As a result, a great deal of efforts and resources has been spent on the research and development of high efficiency and low emission engines for automotive applications in the attempt to reduce greenhouse gas emissions and levels of nitrogen oxides and soot emissions, which affect the air quality. This research has developed strategies to investigate the combustion characteristics, engine performance and exhaust emission of diesel–gasoline dual-fuel operation in a Ricardo Hydra single-cylinder optical engine running at 1200 r/min, equipped with a high-pressure common rail injection system for diesel fuel delivery, and a port fuel injection system, designed and manufactured by the author, for gasoline fuel delivery, in order to allow for dual-fuel operations. In-cylinder pressure measurement is used for calculating all engine parameters, heat release rate and efficiency. In addition to the thermodynamic analysis of the combustion parameters, high-speed imaging of spray and combustion chemiluminescence was used for the optical analysis of the effect of the above-mentioned parameters on auto-ignition and combustion processes. Effects of different substitution ratios and diesel injection strategies at low engine loads were studied when the total fuel energy was kept constant. The three main substitution ratios used in this study include 45%, 60% and 75%, which also indicates the amount of fuel energy from port-injected gasoline, where the rest is provided by the direct injection of diesel. Depending on the testing conditions, such as injection strategy and intake conditions, some dual-fuel operations were able to deliver high efficiency and improved emissions compared to that of a pure diesel engine operation, with the diesel–gasoline operation offering more consistency in improved thermal efficiency. The optical analysis of the combustion illustrates the main difference in the flame propagation, distribution and quality for each substitution percentage, as well as the condition under examination. It was observed that combustions with higher concentration of diesel fuel having more diffusion-like combustion, especially with diesel injection timings closer to the top dead centre, where there is less time for the two fuel and air to properly mix before combustion occurs, resulted in higher temperature and levels of NOx due to the pockets of high diesel concentrations within the combustion chamber, whereas higher concentration of gasoline, especially at earlier diesel injection timings, resulted in more homogeneous fuel mixture and thus lower combustion temperatures. In other words, when the gasoline substitution ratio is lower, optimised start of injection is advanced further, so that richer diesel mixture needs longer ignition delay to have proper combustion timing, and combustion is milder and peak heat release rate is slightly lower due to less local diesel rich mixture area by means of earlier injection timing, and in terms of emissions, lower gasoline substitution ratio, decreases NOx with more homogeneous diesel mixture, and same can be said for total hydrocarbon. Performing the thermodynamics testing with an all metal piston alongside the optical testing allowed for the confirmation of these outcomes. This study not only delivers an insight to the benefits of dual-fuel engine operation, it also represents the benefits of optical engines in providing better understanding of engine operation and ways of improving it.


2009 ◽  
Vol 137 (2) ◽  
pp. 109-116
Author(s):  
Radu ROSCA ◽  
Petru CÂRLESCU ◽  
Edward RAKOSI ◽  
Gheorghe MANOLACHE

The paper presents experimental results concerning the fueling of two injection systems for D.I. Diesel engines with Biodiesel fuels. The neat Biodiesel (B100) was obtained from waste vegetable oil (collected from a local branch of McDonald’s), using the base catalyzed method; diesel fuel was also used in order to test the injection equipments and obtain reference values. The fuel injection pumps used during the tests were RO-PES4A90D410RS2240 (romanian) and a Bosch type one (PES5MW55/320/RS/120403), with the corresponding high pressure fuel lines and injectors. The injection equipment was mounted on a MIRKOZ test bed, equipped with pressure transducers, rotation angle transducer and a BOSCH injection rate meter. The tests were developed at different pump speeds and displacements of the injection pump control rack. The following injection characteristics were investigated: cyclic fuel delivery, injection duration, pressure wave propagation time, average injection rate, peak injection pressure. For the both types of injection equipment, cyclic fuel delivery, injection duration and peak injection pressure increased when biodiesel was used as fuel (compared to Diesel fuel), while the average injection rate and pressure wave propagation time decreased.


2009 ◽  
Author(s):  
Elizabeth Ruth Anthony ◽  
Chantal P. Tusher ◽  
Dary Enkhtor ◽  
Sarah Cook
Keyword(s):  

IEE Review ◽  
1988 ◽  
Vol 34 (10) ◽  
pp. 415
Author(s):  
J.A. Bladon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document