scholarly journals EFFECT OF ETHANOL ON PERFORMANCE AND DURABILITY OF A DIESEL COMMON RAIL HIGH PRESSURE FUEL PUMP

Transport ◽  
2015 ◽  
Vol 31 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Raimondas Kreivaitis

This paper presents a comparative experimental study for determining the effect of ethanol on functionality of a high pressure pump of the common rail fuel injection system. For experimental durability tests were prepared two identical fuel injection systems, which were mounted on a test bed for a fuel injection pump. One of the fuel injection systems was feed with diesel fuel; other fuel injection system was fuelled with ethanol–diesel fuel blend. A blend with 12% v/v ethanol and 88% v/v diesel fuel and low sulphur diesel fuel as a reference fuel were used in this study. To determine the effect of ethanol on the durability of the high pressure pump total fuel delivery performance and surface roughness of pump element were measured prior and after the test. Results show that the use of the ethanol–diesel blend tested produced a negative effect on the durability of the high pressure fuel pump. The wear of plungers and barrels when using ethanol–diesel fuel blend caused a decrease in fuel delivery up to 30% after 100 h of operation.

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4166
Author(s):  
Carmen Mata ◽  
Jakub Piaszyk ◽  
José Antonio Soriano ◽  
José Martín Herreros ◽  
Athanasios Tsolakis ◽  
...  

Common rail (CR) diesel fuel injection systems are very sensitive to variations in fuel properties, thus the impact of alternative fuels on the durability of the injection system should be investigated when considering the use of alternative fuels. This work studies a high-pressure CR (HPCR) diesel fuel injection system operating for 400 h in an injection test bench, using a fuel blend composed of an alternative paraffinic fuel and conventional diesel (50PF50D). The alternative fuel does not have aromatic components and has lower density than conventional diesel fuel. The injection system durability study was carried out under typical injection pressure and fuel temperature for the fuel pump, the common rail and the injector. The results show that the HPCR fuel injection system and its components (e.g., piston, spring, cylinder, driveshaft and cam) have no indication of damage, wear or change in surface roughness. The absence of internal wear to the components of the injection system is supported by the approximately constant total flow rate that reaches the injector during the whole the 400 h of the experiment. However, the size of the injector nozzle holes was decreased (approximately 12%), being consistent with the increase in the return fuel flow of the injector and rail (approximately 13%) after the completion of the study. Overall, the injection system maintained its operability during the whole duration of the durability study, which encourages the use of paraffinic fuels as an alternative to conventional diesel fuel.


2019 ◽  
Vol 177 (2) ◽  
pp. 132-135
Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MICKEVIČIUS ◽  
Raimondas KREIVAITIS

This paper presents comparative experimental study’s results of ethanol-diesel fuel blends made effects on operational properties of a high-pressure fuel pump of a common rail injection system. The two identical fuel injection systems mounted on a test bed of the fuel injection pumps were prepared for the experimental durability tests. The lubricity properties of ethanol-diesel fuel blends E10 and E20 blends were studied using a four-ball tribometer. The test results showed that long-term (about 100 hours) using of ethanol-diesel blends produced a negative effect on the durability of the high-pressure fuel pump. Due to the wear of plunger-barrel units the decrease in the fuel delivery rate occurred of about 39% after the 100 h of continuous operation with ethanol-diesel fuel blends. The average friction coefficients of ethanol-diesel fuel blend E10 was lower than that of the normal diesel fuel. After the 100 hours of operation with ethanoldiesel fuel blend E10, the measured wear scar diameter was 10% higher than that of a fossil diesel fuel.


Author(s):  
Yong Yi ◽  
Aleksandra Egelja ◽  
Clement J. Sung

The development of a very high pressure diesel fuel injection system has been one of the key solutions to improve engine performance and to reduce emissions. The diesel fuel management in the injector directly affects how the fuel spray is delivered to the combustion chamber, and therefore affects the mixing, combustion and the pollutants formation. To design such a very high pressure diesel fuel injection system, an advanced CFD tool to predict the complex flow in the fuel injection system is required in the robust design process. In this paper, a novel 3D CFD dynamic mesh with cavitation model is developed to simulate the dynamic response of the needle motion of a diesel fuel injector corresponding to high common rail pressure and other dimensional design variables, coupling with the imbalance of the spring force and the flow force (pressure plus viscous force). A mixture model is used for cavitation resulting from high speed flow in fuel injector. Due to the lack of experimental data, the model presented in this paper is only validated by a limited set of experimental data. Required meshing strategy is also discussed in the paper.


Author(s):  
Стасис СЛАВИНСКАС ◽  
Томас МИЦКЯВИЧЮС ◽  
Арвидас ПАУЛЮКАС

This paper presents comparative experimental study’s results of diesel fuel and aviation fuel effect on operational properties of a high-pressure fuel pump of a common rail injection system. The two identical fuel injection systems mounted on a test bed of the fuel injection pumps were prepared for the experimental durability tests. The lubricity properties of diesel fuel and aviation fuel (Jet-A1) were studied using the High-Frequency Reciprocating Rig (HFRR) method. The values of wear scar diameter (WSD) obtained with Jet-A1 fuels were compared to the respective values measured with the reference diesel fuel. The microscopic photographs of the wear scar diameters obtained on above mentioned fuels are presented in the paper. The test results showed that long-term (about 300 hours) using aviation fuels produced a negative effect on the durability of the high-pressure fuel pump. Due to the wear of plunger-barrel units the decrease in the fuel delivery rate occurred of about 6.7 % operating with aviation fuel. The average friction coefficients of Jet-A1 fuels were higher than that of the normal diesel fuel. Keywords: diesel fuel, aviation Jet-A1 fuel, lubricity, plunger-barrel units, wear scar diameter


1998 ◽  
Author(s):  
K. Gebert ◽  
R. L. Barkhimer ◽  
N. J. Beck ◽  
D. D. Wickman ◽  
K. V. Tanin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document