scholarly journals Improvement of plant regeneration and Agrobacterium-mediated genetic transformation of Stylosanthes guianensis

2019 ◽  
Vol 7 (5) ◽  
pp. 480-492 ◽  
Author(s):  
Pengfei Guo ◽  
Pandao Liu ◽  
Jian Lei ◽  
Caihong Chen ◽  
Hong Qiu ◽  
...  

As a pioneer tropical pasture legume, stylo (Stylosanthes guianensis) is well adapted to growth-limiting factors in acid soils. Considering the importance of stylo, there is a need to improve Agrobacterium-mediated genetic transformation to enable development of elite cultivars. In this study, S. guianensis cv. RY5 was used to systematically optimize Agrobacterium-mediated transformation based on its plant regeneration. Results showed that Murashige and Skoog (MS) medium containing 0.2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2 mg/L 6-benzylaminopurine (6-BA) was the optimal callus induction medium. MS medium supplemented with 2 mg/L 6-BA was suitable for shoot regeneration from cotyledon-derived calluses, and 0.5 mg/L indole-3-acetic acid (IAA) and 0.5 mg/L indole-3-butyric acid (IBA) applications were beneficial for rooting. The highest transformation efficiency (67%) was obtained at an Agrobacterium concentration of optical density = 0.6 combined with an infection time of 15 min and 3 days of co-cultivation. Furthermore, 200 mg/mL carbenicillin (Carb) and 0.6 mg/L Basta® supplements were effective in eliminating excess bacterial growth and selecting transgenic plants, respectively. Subsequent polymerase chain reaction (PCR) analysis confirmed that the β-glucuronidase (GUS) and BAR genes were successfully integrated into the stylo genome. Wider testing of this improved protocol as a means of enhancing genetic improvement and gene function analysis of stylo seems warranted.

2012 ◽  
Vol 40 (2) ◽  
pp. 140 ◽  
Author(s):  
Hafiz Mamoon REHMAN ◽  
Iqrar Ahmad RANA ◽  
Siddra IJAZ ◽  
Ghulam MUSTAFA ◽  
Faiz Ahmad JOYIA ◽  
...  

Dalbergia sissoo Roxb. ex DC. (Sissoo) is a native forest tree species in Pakistan. Many ecological and economical uses are associated with this premier timber species, but dieback disease is of major concern. The objective of this study was to develop a protocol for in vitro regeneration of Sissoo that could serve as target material for genetic transformation, in order to improve this species. Callus formation and plantlet regeneration was achieved by culturing cotyledons, immature seeds, and mature embryos on a modified Murashige and Skoog (1962) (MS) medium supplemented with plant growth regulators. Callus induction medium containing 2.71 ?M 2, 4-dichlorophenoxyacetic acid (2,4-D) and 0.93 ?M kinetin produced better callus on all explants tested compared to other treatments, such as 8.88 ?M 6-benzylaminopurine (BA) and 2.69 ?M ?-naphthalene acetic acid (NAA), or 2.71 ?M 2, 4-D and 2.69 ?M NAA. Shoot regeneration was best on MS medium containing 1.4 ?M NAA and 8.88 ?M BA compared to other treatments, such as 1.4 ?M NAA and 9.9 ?M kinetin, or 2.86 ?M indole-3-acetic acid and 8.88 ?M BA. Murashige and Skoog medium containing 1.4 NAA ?M and 8.88 ?M BA was better in general for regeneration regardless of callus induction medium and the type of explant used. Rooting was best on half-strength MS medium with 7.35 ?M indole-3-butyric acid. Regenerated plantlets were acclimatized for plantation in the field. Preliminary genetic transformation potential of D. sissoo was evaluated by particle bombardment of callus explants with a pUbiGus vector. The bombarded tissue showed transient Gus activity 1week after bombardment. Transformation of this woody tree is possible provided excellent regeneration protocols. The best combination for regeneration explained in this study is one of such protocols.


2003 ◽  
Vol 55 (3-4) ◽  
pp. 77-80 ◽  
Author(s):  
Aneta Bijelovic ◽  
Marko Sabovljevic

Callus induction of moss species Aloina aloides (Schultz) Kindb. was obtained on Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) or with 1.0 mg/L 2,4-D and 1.0 mg/L kinetin (KIN) or with 0.2 mg/L indole-3-butyric acid (IBA) and 2.0 mg/L 6-benzylaminopurine (BAP) or with 7.5 g/L of sucrose or with 15 g/L of sucrose or hormone - free and sugar free MS basal medium. The callus can be maintained for a long period of time without bud formation subcultured on the above media, at 16 h day/8 h night, 25 ? 2?C, 60-70% air humidity and irradiance of 50 ?mol m-2s-1. To obtain plant regeneration pieces, calli were transferred onto MS media supplemented with different concentrations of auxins and cytokinins (1.0 mg/L 2,4-D and 2 mg/L KIN; 0.2 mg/L IBA and 2 mg/L KIN; or 0.2 mg/L IAA and 2 mg/L BAP). In these media after subculturing, callus enlarges and turns to gametophytes with buds. Except for a smaller size, the plants obtained on the callus did not differ morphoanatomically from the shoots in the nature.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 839
Author(s):  
Dorota Weigt ◽  
Idzi Siatkowski ◽  
Magdalena Magaj ◽  
Agnieszka Tomkowiak ◽  
Jerzy Nawracała

Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro culture thus far. Therefore, we studied the impact of ionic liquids on the ability to undergo microspore embryogenesis in anther cultures of wheat. Two embryogenic and two recalcitrant genotypes were used for this study. Ten combinations of ionic liquids and 2,4-dichlorophenoxyacetic acid were added to the induction medium. In most cases, they stimulated induction of microspore embryogenesis and green plant regeneration more than a control medium supplemented with only 2,4-dichlorophenoxyacetic acid. Two treatments were the most favorable, resulting in over two times greater efficiency of microspore embryogenesis induction in comparison to the control. The effect of breaking down the genotype recalcitrance (manifested by green plant formation) was observed under the influence of 5 ionic liquids treatments. Summing up, ionic liquids had a positive impact on microspore embryogenesis induction and green plant regeneration, increasing the efficiency of these phenomena in both embryogenic and recalcitrant genotypes. Herbicidal ionic liquids can be successfully used in in vitro cultures.


1970 ◽  
Vol 14 ◽  
pp. 31-38 ◽  
Author(s):  
M Rahman ◽  
M Asaduzzaman ◽  
N Nahar ◽  
MA Bari

Somatic embryos were obtained from cotyledon and midrib explants of Solanum melongena L., cultivar Loda. For callus induction, medium was supplemented with different concentrations of auxin singly or in combination with BAP. The best callusing 83-85% was obtained from both of the explants cultured on MS medium containing 2.0 mgl-1NAA + 0.05 mgl-1BAP. Somatic embryogenesis and shoot regeneration was achieved after transferring the calli to MS medium supplemented with BAP, GA3, NAA and Zeatin. Cotyledon derived calli showed better performance (87%) for regeneration than that of midrib (82%) when sub cultured on MS medium having 2.0 mgl-1 Zeatin + 1.0 mgl-1 BAP. For root induction, MS + 3.0 mgl-1 IBA was proved to be better treatment for average number (14-15) and mean length (12 cm) of roots than those of other treatments. Key words: Eggplant; cotyledon; midrib; callus induction; somatic embryo J. bio-sci. 14: 1-9, 2006


1996 ◽  
Vol 44 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Perumal Venkatachalam ◽  
Narayanasamypillai Jayabalan

High yields of protoplasts were obtained from immature leaves of aseptically grown plants of Arachis hypogaea using an enzyme solution containing cellulase 2.0% (w/v) and Macerozyme 1.0% (w/v) in 0.6 M mannitol. Isolated protoplasts were cultured in Kao's medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The protoplasts started to divide after 3–5 days of culture. Sustained divisions resulted in mass production of cell colonies and mini calli in 4 weeks. After 4 weeks, protoplast colonies were transferred to the Murashige and Skoog (MS) medium supplemented with a-naphthalene acetic acid (NAA) and BAP. Colonies proliferated into actively growing calli. Further attempts to regenerate plants from such calli were not successful. However, protoclones differentiated roots on the same medium. Alternative methods for plant regeneration from protoplast derived callus cultures were tried through somatic embryogenesis. Protoplast-derived calli treated with 2,4-D and BAP formed somatic embryos. Somatic embryogenesis began in the proembryo stage and proceeded from globular to dicotyledonary stage. Embryos were then transferred onto hormone-free MS medium for germination. Five to ten percent of these embryoids germinated and grew to plantlets. Regenerated plants were transferred to plastic cups and grown to maturity.


2008 ◽  
Vol 21 (1) ◽  
pp. 43-48
Author(s):  
S. M. H. Kabir ◽  
M. S. Ali ◽  
M. K. Islam

The Experiment was conducted to establish an efficient plant regeneration protocol from hypocotyl sections of soybean. Callus initiation, shoot and root development were observed by using different concentrations and combinations of growth regulators. The best result for callus induction was observed in MS medium supplemented with 1.5 mg/l Kinetin and 2.0 mg/l NAA. The calli were transferred to shoot induction medium. The best shoot induction occurred in the medium containing 3.0 mg/l BAP and 0.5 mg/l NAA. The elongated shoots developed roots on MS medium supplemented with different IBA concentrations where 1.5 mg/l IBA was the best for root development. Plantlets with a well developed root system were transplanted in plastic container with a soil mixture of cowdung and fine sand. Plantlet survival rate was 70%. Through this experiment, a general suitable regeneration protocol from hypocotyls of soybean has been developed which can potentially be used for micropropagation and future transformation research in soybean.DOI: http://dx.doi.org/10.3329/bjpbg.v21i1.17049


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1104
Author(s):  
Ritika Bhatt ◽  
Prem Prakash Asopa ◽  
Rohit Jain ◽  
Aditi Kothari-Chajer ◽  
SL Kothari ◽  
...  

An efficient and reproducible protocol for Agrobacterium tumefaciens mediated genetic transformation was developed for kodo millet (Paspalum scrobiculatum L.) by optimizing various parameters. Agrobacterium strains EHA 105 and LBA 4404 harboring plasmids pCNL 56 and pCAMBIA 2300, respectively, provided the highest transformation efficiency. Addition of acetosyringone (AS) in infection medium (200 µM EHA 105, 250 µM–LBA 4404) and co-cultivation medium (50 µM) increased the transformation efficiency. Transient and stable expression of gus gene was confirmed with histochemical assay of infected embryos and leaves of transformed plants, respectively. The best GUS response was obtained by pretreatment of callus with an antinecrotic mixture (10 mg/L Cys + 5 mg/L Ag + 2.5 mg/L As) at infection time of 20 min followed by co-cultivation for 3 days (EHA 105) and 5 days (LBA 4404) in dark. Regenerated transgenic plants were obtained after 8 to 10 weeks of selection on callus induction medium (NAA 0.5 mg/L, BAP 1 mg/L) containing 50 mg/L Kan + 250 mg/L Cef and were rooted for 2 weeks on MS medium containing PAA (1 mg/L) and phytagel. The plantlets established in greenhouse showed normal growth. Therefore, the protocol developed in the present study can be used for development of improved varieties of kodo millet.


2015 ◽  
Vol 804 ◽  
pp. 259-262
Author(s):  
Chonnikarn Khunchuay ◽  
Kanokporn Sompornpailin

The optimum ratios of auxin and cytokinin are necessary for callus induction and plant regeneration. This ratio is a key function involving in the promoting cell division and proliferation in tissue culture. The axillary buds of in vitro plantlets fromVetiveria nemoralisA. Camuscv. Roiet were used as explants for the callus induction experiment. These explants were cultured on Murashige & Skoog (MS) medium [1] supplemented with various combinations of auxins and cytokinins. Under this experimental study, the highest frequency of callus induction was found on MS medium supplemented with 2 mgL-1α-naphthalene acetic acid (NAA) and 1 mgL-12-furanylmethyl-1H-purine-6-amine (kinetin) (62.5%). On the other hand the combination of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 6-benzylaminopurine (BAP) was toxicity to this explants. All culturing explants were dead and no calli appearance. The calli derived from each medium were transferred into the same regeneration medium (MS with 1 mgL-1NAA and 2 mgL-1BAP). After culturing on regeneration medium, calli induced from the highest callus induction medium have shown high frequencies of regeneration and also shoot number per callus (58.33% and 7.1 shoots).


2012 ◽  
Vol 43 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Roberson Dibax ◽  
Giovana Bomfim de Alcantara ◽  
Marília Pereira Machado ◽  
João Carlos Bespalhok Filho ◽  
Ricardo Augusto de Oliveira

The objectives of this study were to establish appropriate conditions for obtaining plant regeneration and acclimatization of the 'RB92579' and 'RB93509' sugarcane cultivars and to elucidate the shoots origin through histological analysis. For both cultivars, obtaining shoots showed better results with the culture of explants on a callus induction medium containing 2.0mg L-1 2,4-dichlorophenoxyacetic acid, followed by cultivation on a shoot induction medium containing 0.1mg L-1 kinetin and 0.2mg L-1 benzilaminopurine. The MS medium without growth regulators proved to be appropriate for elongation and rooting of shoots and the use of the composed substrate of vermiculite + MS salts was effective for acclimatization. Histological analysis revealed that the origin of the shoots in both cultivars occurred through indirect organogenesis.


Author(s):  
Tsolmon M ◽  
Ganbat B ◽  
Oyunbileg Yu

The aim of this study is to determine the effect of hormones and selection of the most effective medium using callus cultures derived from mature zygotic embryos of Sophora alopecuroides Linn. for plant regeneration. After 8 weeks of culture, the highest callus induction medium (93.3%) was obtained on MS medium supplemented with 0.2 mglL Zeatin and 2.0 mg/L α-naphthaleneacetic acid (NAA). The best callus proliferation was observed on the same medium. Shoots regenerated at the highest frequency of 50.0% with 5.8 shoots when calli were cultured on MS medium with 2.0 mg/L BA. Therefore, this protocol provides a basis for future studies on genetic improvement and could be applied to large-scale multiplication systems for commercial nurseries of S.alopecuroides L.


Sign in / Sign up

Export Citation Format

Share Document