scholarly journals SYNTHESIS AND CHARACTERIZATION OF HPMC/HAp/Fe3O4 COMPOSITE FOR HYPERTHERMIA APPLICATION

2020 ◽  
Vol 21 (4) ◽  
pp. 170
Author(s):  
Muflikhah Muflikhah ◽  
Wildan Zakiah Lubis ◽  
Irma Septi Ardiani ◽  
Khoirotun Nadiyyah ◽  
Sulistioso Giat Sukaryo

SYNTHESIS AND CHARACTERIZATION OF HPMC/HAp/Fe3O4 COMPOSITE FOR HYPERTHERMIA APPLICATION. Magnetic material become subject of intense research for hyperthermia application, and injectable magnetic hyperthermia for bone cancer is one of this research interest. In this study, composite of hydroxyapatite (HAp) and Fe3O4 in Hydroxypropyl-methyl cellulose (HPMC) matrix (HPMC/HAp/Fe3O4) has been synthesized in gel form that are expected can be applied for injectable bone substitute (IBS) in hyperthermia therapy. Composites were made using conventional methods by mixing HAp powder with ferrofluid Fe3O4 in HPMC solution. The composition of the composites were varied with the mass comparison of HPMC: HAp: Fe3O4 was 1: 0: 0; 1: 3: 0; 1: 2: 0.5; 1: 1: 0.25; and 1: 0: 3. The physical, chemical, and magnetic properties of the composites were characterized using X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometry (FT-IR), Particle Size Analyzer (PSA), and Vibrating Sample Magnetometer (VSM). The XRD characterization results of the HPMC/HAp/Fe3O4 composite showed the crystalline phase of the constituent components. Saturation magnetization of the HPMC/HAp/Fe3O4 composite was 2.72 emu/g and 1.79 emu/g for the composition of 1: 2: 0.5 and 1:1:0.25 respectively. HPMC/HAp/Fe3O4 composite has superparamagnetic and biocompatible properties, so that can be applied as IBS in hyperthermia therapy for bone cancer.

2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2011 ◽  
Vol 327 ◽  
pp. 115-119 ◽  
Author(s):  
Duo Wang ◽  
Jie Gao ◽  
Wei Fang Xu ◽  
Feng Bao ◽  
Rui Ma ◽  
...  

Graphene oxide (GO) was made by a modified Hummers method. Graphene oxide modified phenolic resin nanocomposites (GO/PF) were prepared by Steglich esterification, catalyzed by dicyclohexyl carbodiimide and 4-dimethylaminopyridine. The composites were characterized by Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. The result revealed that the graphene oxide was absolutely exfoliated and covalent linked GO/PF composite was obtained. The thermal stability of PF is remarkably improved by modification with GO.


2015 ◽  
Vol 34 (4) ◽  
Author(s):  
Esma Ahlatcioǧlu ◽  
Bahire Filiz şenkal ◽  
Mustafa Okutan

AbstractIn this work, synthesis and characterization of composite materials based on NanoClay(NC) and boric acid doped PolyAniline (PANI) is studied. PANI was successfully incorporated into NC to form PANI-NC composites. The resulting organic-inorganic hybrid material, PANI-NC was characterized by various physicochemical techniques. Formation of PANI inside the clay tactoid has been confirmed by X-ray diffraction studies (XRD), scanning electron microscope (SEM) and FT-IR. Also, conductivity and physical properties of the PANI-NC composites were investigated.


2012 ◽  
Vol 602-604 ◽  
pp. 917-920 ◽  
Author(s):  
Zhen Hui Xiao ◽  
Shui Sheng Wu ◽  
Yan Lin Sun ◽  
Yu Lin Zhao ◽  
Ya Ming Wang

Graphene was synthesized by microwave-hydrothermal chemical reduction of graphite oxide using hydrazine hydrate as the reducing agent. Graphene was characterized using X-ray diffraction, UV-visible spectrum, FT-IR spectrum and scanning electron microscopy. Results indicated that the as-prepared graphene was wrinkled and comprised fewer graphenes with a highly crystalline structure.


2013 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Mahdiyeh Esmaeili-Zare ◽  
Masoud Salavati-Niasari ◽  
Davood Ghanbari

AbstractMercury selenide nanostructures were synthesized from the reaction of N, N′-bis(salicylidene)propane-1,3-diamine mercury complex, (Hg(Salpn)) as a novel precursor, via sonochemical method. The effect of different surfactant on the morphology and particle size of the products was investigated. Products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray energy dispersive spectroscopy (EDS).


2017 ◽  
Vol 35 (1) ◽  
pp. 188-196 ◽  
Author(s):  
Yifu Zhang

AbstractHollow V2O5 microspheres (HVOM) were fabricated using NH4VO3, ethylene glycol and carbon spheres as the starting materials by a template solvothermal approach and subsequent calcination. The morphology and composition were characterized by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmet-Teller (BET). The results showed that the obtained HVOM were constructed from nanoparticles with rough surface. The electrochemical properties of HVOM as a supercapacitor electrode were investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD). HVOM displayed excellent pseudocapacitance property and their specific capacitances were 488 F·g–1, 455 F·g–1, 434 F·g–1 and 396 F·g–1 at the current density of 0.5 A·g–1, 1 A·g–1, 2 A·g–1 and 5 A·g–1, respectively. They also exhibited an excellent energy density of 8.784 × 105 J·kg–1 at a power density of 900 W·kg–1 . The good electrochemical properties of the as-synthesized HVOM make them a promising candidate as a cathode material for supercapacitors.


2010 ◽  
Vol 113-116 ◽  
pp. 1841-1844
Author(s):  
Cheng Yu Wang ◽  
Jian Li ◽  
Chang Yu Liu

In this paper, the preparation of amphiphobic CaCO3-wood composite by reaction of CaCl2 and Na2CO3 in wood through double-diffusive method in the presence of perfluorooctane surfapropyl betaine (DF-921) is demonstrated. The properties of synthesized CaCO3-wood composite were investigated by the contact angle analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The mechanical properties of the product were tested. The experimental results suggested that a much higher properties performance for the wood-based composite with modified CaCO3. The surface of the new product exhibited the amphiphobic property.


2017 ◽  
Vol 72 (2) ◽  
pp. 115-118 ◽  
Author(s):  
Mohammad Hakimi ◽  
Zahra Mardani ◽  
Keyvan Moeini ◽  
Fabian Mohr

AbstractIn this work, a new macrocyclic copper complex, [Cu(ACE)(SCN)2]; ACE: 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane, was prepared and characterized by elemental analysis, FT-IR, Raman spectroscopy and single-crystal X-ray diffraction. X-ray analysis of [Cu(ACE)(SCN)2] reveals an elongated octahedral geometry around the copper atom in a centrosymmetric CuN6 environment.


2016 ◽  
Vol 35 (2) ◽  
pp. 215-220
Author(s):  
Zahra Asgari-Fard ◽  
Mohammad Sabet ◽  
Masoud Salavati-Niasari

AbstractStrontium carbonate (SrCO3) nanostructures were synthesized via simple hydrothermal method by Sr(NO3)2, ethylenediamine and hydrazine as reagents. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Different parameter’s effects on the product size and morphology were investigated. It was found that reagent concentration, reaction time and temperature play key roles in morphology of the obtained product.


2011 ◽  
Vol 194-196 ◽  
pp. 781-784
Author(s):  
Fa Mei Feng ◽  
Jia Qing Xie ◽  
Li Ke Zou ◽  
Bin Xie

Well-dispersed CeO2 nanoparticles were successfully prepared in a simple system composed of sodium bis (2-ethylhexyl) sulfosuccinate (AOT)- octane-water (W/O) microemulsion in this paper. The morphology and microstructure of the products were characterized by the laser particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC) and transmission electron microscope (TEM). It was found that the CeO2nanoparticles obtained from this method have well-proportioned size distributions; the surfactant (AOT) molecule was adsorbed on the surface of CeO2nanoparticles precursor, which is favorable for the dispersion of CeO2nanoparticles; the CeO2nanoparticles calcined was a crystal of the cubic structure. In addition, the mechanism on the formation of the CeO2nanoparticles was also proposed in this paper.


Sign in / Sign up

Export Citation Format

Share Document