scholarly journals Simulation and Modeling of High Efficiency Inverters for Solar PV Cell Applications

IJIREEICE ◽  
2021 ◽  
Vol 9 (10) ◽  
Author(s):  
Bikash Kumar Mohanty ◽  
Dr.Shafali Jain ◽  
Mr.Mithlesh Gautam
2019 ◽  
Vol 8 (4) ◽  
pp. 10843-10846

Solar irradiation is the primary input for the solar PV module. Different types of PV module are used to get high efficiency such as polycrystalline, monocrystalline and amorphous PV module . Among all module polycrystalline PV cell is the most reliable one. Two valuable inputs of a solar PV cell are solar irradiation and temperature. For temperature, solar PV material is very sensitive. However, solar irradiation has many types of wavelengths, and each wavelength has a different effect on solar cell because each wavelength has different energy frequency. Energy frequency is the primary term which affects the output of PV panel.so in this paper two types of experimental analysis has done to know the effect of the colour spectrum, and another experiment has done to know the effect of different types of plastic on PV panel. The experimental data used to verify the efficiency and output power of the system. The results show how the output power and efficiency of PV affected by these two factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rohith Mittapally ◽  
Byungjun Lee ◽  
Linxiao Zhu ◽  
Amin Reihani ◽  
Ju Won Lim ◽  
...  

AbstractThermophotovoltaic approaches that take advantage of near-field evanescent modes are being actively explored due to their potential for high-power density and high-efficiency energy conversion. However, progress towards functional near-field thermophotovoltaic devices has been limited by challenges in creating thermally robust planar emitters and photovoltaic cells designed for near-field thermal radiation. Here, we demonstrate record power densities of ~5 kW/m2 at an efficiency of 6.8%, where the efficiency of the system is defined as the ratio of the electrical power output of the PV cell to the radiative heat transfer from the emitter to the PV cell. This was accomplished by developing novel emitter devices that can sustain temperatures as high as 1270 K and positioning them into the near-field (<100 nm) of custom-fabricated InGaAs-based thin film photovoltaic cells. In addition to demonstrating efficient heat-to-electricity conversion at high power density, we report the performance of thermophotovoltaic devices across a range of emitter temperatures (~800 K–1270 K) and gap sizes (70 nm–7 µm). The methods and insights achieved in this work represent a critical step towards understanding the fundamental principles of harvesting thermal energy in the near-field.


2021 ◽  
Vol 43 ◽  
pp. 2843-2849 ◽  
Author(s):  
Bhuwan Pratap Singh ◽  
Sunil Kumar Goyal ◽  
Prakash Kumar
Keyword(s):  
Solar Pv ◽  
Pv Cell ◽  

Author(s):  
Yuwono Bimo Purnomo ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

In a standalone photovoltaic (PV) system, a bidirectional DC converter (BDC) is needed to prevent the battery from damage caused by DC bus voltage variation. In this paper, BDC was applied in a standalone solar PV system to interface the battery with a DC bus in a standalone PV system. Therefore, its bidirectional power capability was focused on improving save battery operation while maintaining high power quality delivery. A non-isolated, buck and boost topology for the BDC configuration was used to interface the battery with the DC bus. PID controller-based control strategy was chosen for easy implementation, high reliability, and high dynamic performance. A simulation was conducted using MATLAB Simulink program. The simulation results show that the implementation of the BDC controller can maintain the DC bus voltage to 100 V, have high efficiency at 99.18% in boost mode and 99.48% in buck mode. To prevent the battery from overcharging condition, the BDC stops the charging process and then works as a voltage regulator to maintain the DC bus voltage at reference value.


Author(s):  
Abhishek Sharma ◽  
Abhinav Sharma ◽  
Averbukh Moshe ◽  
Nikhil Raj ◽  
Rupendra Kumar Pachauri

In the field of renewable energy, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction of solar PV cell is a highly non-linear complex optimization problem. In this research work, the authors have explored grey wolf optimization (GWO) algorithm to estimate the optimized value of the unknown parameters of a PV cell. The simulation results have been compared with five different pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), chicken swarm optimization (CSO) and cultural algorithm (CA). Furthermore, a comparison with the algorithms existing in the literature is also carried out. The comparative results comprehensively demonstrate that GWO outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and the rate of convergence. Furthermore, the statistical results validate and indicate that GWO algorithm is better than other algorithms in terms of average accuracy and robustness. An extensive comparison of electrical performance parameters: maximum current, voltage, power, and fill factor (FF) has been carried out for both PV model.


2021 ◽  
Author(s):  
Mustajab Ali ◽  
Hyungjun Kim

&lt;p&gt;Solar Photovoltaic (PV) has the potential to fulfill a considerable amount of growing electricity demands worldwide.&amp;#160; In addition, being neat and clean, it can help to keep the greenhouse gases emission within safe limits. This resource needs a substantial amount of area for its sitting to supply the required amount of electricity. Such an area mainly depends on the available solar resource which is mainly the function of the local environment where PV is installed. Although some previous studies exist at the global scale, however, they have not comprehensively considered environmental (e.g., temperature, dust deposition, and snow) limiting factors that affect the actual solar PV yield. This study addresses such shortcomings and deals with all limiting factors simultaneously to provide a reliable assessment of potential PV performance at a global scale. PV cell efficiency is reduced due to an increase in resistance between cells at a temperature above a certain limit. Meanwhile, the accumulation of soil (dust) and snow on PV modules are also proven to limit the solar PV resources as it tends to block the incoming solar radiation. Lastly, the geomorphological parameter, which is an arrangement of a PV module to face the sun, is also shown to change its power output.&lt;/p&gt;&lt;p&gt;PV cell efficiency corrections for temperature changes, soil, and snow covers are applied using the biased corrected data from Global Soil Wetness Project 3 (GWSP3), CanSISE Observation-Based Ensemble of Northern Hemisphere Terrestrial Snow Water Equivalent, Version 2 from National Snow and Ice Data Center (nsidc), and TERRA/MODIS Aerosol Optical Thickness data available from NASA Earth Observations (NEO). The daily mean solar climatological values near the Earth&amp;#8217;s surface for the last 14 years (2001&amp;#8211;2014) with global coverage of 0.5&amp;#186; x0.5&amp;#186; are used in the analysis. The results have demonstrated that PV performance is affected by temperature increase, soil, snow, and varying tilt-angles. An annual maximum reduction of 5.7% in the total solar PV resource is seen in the Middle East due to the temperature changes. Likewise, a maximum loss of 6.45% in the total solar PV resource is witnessed for soil deposition for Sub-Saharan Africa. A higher reduction (~20%) is shown by snow covers for Russia and Canada in the upper Northern Hemisphere. In addition, a decline of 5&amp;#8211;7% is observed for variation in the solar PV tilt-angles in comparison to optimum ones. As a whole, a maximum reduction of 19.45% in the total solar PV resource is found, which leads to a higher coefficient of determination (R&lt;sup&gt;2&lt;/sup&gt;= 0.78) than uncorrected estimation (R&lt;sup&gt;2&lt;/sup&gt;=0.67). This study will be helpful for household as well as large scale solar schemes and may contribute particularly to achieving the UN SDG No. 07 &amp;#8212; Affordable and Clean Energy &amp;#8212; and No. 13 &amp;#8212; Climate Action &amp;#8212; quantitatively.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document