scholarly journals Mathematical simulation and water modelling of liquid steel interaction with an argon bubble curtain in a one-strand continuous casting tundish

Author(s):  
A. Cwudziiiski
2013 ◽  
Vol 774-776 ◽  
pp. 316-320
Author(s):  
Yang Li ◽  
Yan Jin ◽  
Hui Yu ◽  
Kang Yang ◽  
Fan Ai ◽  
...  

Placement in the middle retaining wall package, aimed at controlling the flow of liquid steel forms, so that movement of a reasonable level remained stable, while reducing interference from turbulence and dead zones, molten steel in order to extend the average stay of removal in favor of inclusion to improve the cleanliness of molten steel. Keywords:Tundish; Retaining Wall; Flow field; Mathematical Modeling; Inclusion;Optimization setting


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1590
Author(s):  
Sheng Chang ◽  
Zheng Liu ◽  
Zongshu Zou ◽  
Lei Shao ◽  
Baokuan Li

A short plunging jet technique was developed to produce small bubbles in continuous casting tundish, with argon sealing, in order to promote the removal of inclusions smaller than 50 μm. The liquid steel coming out of the ladle shroud is accelerated and vibrated by gravity, leading to gas entrainment. This novel approach is free from bubbles growing along the nozzle surface due to the poor wetting condition, which is applicable to producing small bubbles in liquid steel. Water modeling was carried out to investigate the impact of the free-fall length on gas entrainment by a short plunging jet. The results show that gas can be entrained into the liquid bath with a free fall longer than 15 mm. Part of the entrained gas is separated from the gas sheath by the rough surface of the inflow stream, forming initial bubbles. These initial bubbles are further refined into small ones of 0.4~2.5 mm due to the turbulent flow in the pouring region. The cylindrical shield can effectively isolate the surface fluctuation caused by the short plunging jet; thereby, a stable slag layer in the tundish can be maintained during gas entrainment.


2012 ◽  
Vol 57 (1) ◽  
pp. 277-282 ◽  
Author(s):  
J. Jowsa ◽  
A. Cwudziński

Thermodynamics Analysis of Non-Metallic Inclusions Formation in the Liquid Steel Flow Through Continuous Casting TundishExperiments were conducted at industrial plant to determine the free and total oxygen contents in molten steel in the tundish during continuous casting blooms of sizes 280×280 mm. On the basis of industrial experiment results a thermodynamic evaluation of non metallic inclusion formation in liquid steel was performed. Software FactSage® with thermodynamic base packages were tested and applied to calculate equilibrium formation of oxides and sulphides. The results showed the effect of oxygen contents and temperature on the formation inclusion in liquid steel. Calculation results was presented in the form of suitable characteristics which were illustrated graphically.


Sign in / Sign up

Export Citation Format

Share Document