scholarly journals The quality of the first and second Vaal Triangle Airshed Priority Area (VTAPA) Air Quality Management Plans

2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Lehlogonolo Moreoane ◽  
Phathutshedzo Mukwevho ◽  
Roelof Burger

In response to deteriorating air quality, South Africa implemented national programmes that aim to manage and regulate ambient air quality and air pollution. Air Quality Management Plans (AQMPs) are clear outlines of measures and resources needed to achieve air quality objectives in a given geographical area and require support from government, business, industry, non-governmental organisations (NGOs) and the public. The success of the AQMPs depends primarily on the support of all stakeholders and the quality of the management plan. The Vaal Triangle Airshed Priority Area (VTAPA) was declared in 2006 as an area where ambient air quality standards are exceeded or may cause adverse air quality impacts. This research study focused on the VTAPA to evaluate the quality of the first and second-generation AQMPs for the VTAPA. Quality evaluation includes an analysis of procedures, processes, methods and documents. Effectiveness refers to the results of individual activities; therefore, the extent to which the AQMP met the expected outcomes of the review package defined the quality of the AQMP report. Both the first and draft second-generation AQMPs were considered to be of good quality. The first-generation AQMP was found to be of better quality than that of the draft second-generation AQMP. Funding mechanisms need to be investigated to assist in implementing intervention strategies in the AQMP as both the first and draft second-generation AQMPs were found to lack the potential to secure funds. Though the draft second-generation AQMP was found to be of lesser quality, the source apportionment study for identification of all sources as well as a better-outlined air quality management system was found to be good improvements to the AQMP.

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1524
Author(s):  
Alessandra Fino ◽  
Francesca Vichi ◽  
Cristina Leonardi ◽  
Krishnendu Mukhopadhyay

Legislative regulations on atmospheric pollution have been established in different parts of the world for addressing air quality management. An important public commitment, common among all nations, is to ensure environmental safety and health protection, particularly for the most fragile population groups. Each country has its own rules and practices to provide adequate and timely information on ambient air quality. Information is given either through easily accessible media, including websites and apps, or by traditional means of telecommunication. An air quality index (AQI) is definitely a valuable tool for disseminating data on the main regulated pollutants and represents a readable indicator of the prevailing situation of air quality in the area. Several calculating expressions were formulated to combine, in a unique value, different parameters, and a few methods were created to determine and compare different AQIs. This paper gives almost a global overview of approaches and tools used to inform the public about the status of the ambient air quality. Different AQIs are analyzed to contribute to the sharing of air quality management practices and information to raise public awareness and to help policymakers to act accordingly.


Urban Climate ◽  
2021 ◽  
pp. 100945
Author(s):  
Mayank Pandey ◽  
M.P. George ◽  
R.K. Gupta ◽  
Deepak Gusain ◽  
Atul Dwivedi

2015 ◽  
Vol 10 (2) ◽  
pp. 523-528 ◽  
Author(s):  
Gurdeep Singh ◽  
Amarjeet Singh

India is in the list of fastest growing countries of the world. India's energy needs are also increasing due to population and industrial growth for improving quality of living style. In India, coal is major input infrastructure industries for example Power plants, Steel plants and Cement industries. India’s 52% of primary energy is coal dependent1. 66% of India's power generation depends upon coal production1. Jharia Coalfield (JCF) is falling in the Lower Gondwana Coalfields of India. The area of the JCF is about 450 km2. It is important for the major supply of precious coking coal required for steel plants in India. It is located in Dhanbad district of Jharkhand state of India, The latitude is 23° 39' to 23° 48' N and longitude is 86° 11' to 86° 27' E for the Jharia coalfield. Based on environmental parameters, all the 103 mines of BCCL have been grouped under 17 Clusters. A cluster consists of a group of mines with mine lease boundary lying in close vicinity and includes-Operating mines, Abandoned/ closed mines and proposed projects.The focused study area is in the western part of the Jharia coalfield is named as Cluster XV group of mines of BCCL consists of four mines, Kharkharee Colliery (UG), Dharmaband Colliery (UG), Madhuband Colliery (UG) and Phularitand Colliery (UG) .The present study was carried out with the objective to measure the ambient air quality of the study area with reference to particulate matter (SPM, PM10 & PM2.5). Ambient air monitoring results have shown that the observe air quality were found within the limit prescribed by MoEF / CPCB. It may due to Underground mines as there are pollution causing lesser activities involved in the UG mining process compared to opencast mining. Implementation of Master plan for Jharia coalfields for environmental management has also improve the air quality in the area10,11.


2016 ◽  
Vol 26 (1) ◽  
pp. 21-28 ◽  
Author(s):  
G.T. Feig ◽  
S. Naidoo ◽  
N. Ncgukana

The Waterberg Priority Area ambient air quality monitoring network was established in 2012 to monitor the ambient air quality in the Waterberg Air Quality Priority Area. Three monitoring stations were established in Lephalale, Thabazimbi and Mokopane. The monitoring stations measure the concentrations of PM10, PM2.5, SO2, NOx, CO, O3, BTEX and meteorological parameters. Hourly data for a 31 month period (October 2012-April 2015) was obtained from the South African Air Quality Information System (SAAQIS) and analysed to assess patterns in atmospheric concentrations, including seasonal and diurnal patterns of the ambient concentrations and to assess the impacts that such reported pollution concentration may have. Local source regions for SO2, PM10, PM2.5 and O3 were identified and trends in the recorded concentrations are discussed.


Author(s):  
Mageshkumar P ◽  
Ramesh S ◽  
Angu Senthil K

A comprehensive study on the air quality was carried out in four locations namely, Tiruchengode Bus Stand, K.S.R College Campus, Pallipalayam Bus Stop and Erode Government Hospital to assess the prevailing quality of air. Ambient air sampling was carried out in four locations using a high volume air sampler and the mass concentrations of PM10, PM2.5, SO2, NOX and CO were measured. The analyzed quality parameters were compared with the values suggested by National Ambient Air Quality Standards (NAAQS). Air quality index was also calculated for the gaseous pollutants and for Particulate Matters. It was found that PM10 concentration exceeds the threshold limits in all the measured locations. The higher vehicular density is one of the main reasons for the higher concentrations of these gaseous pollutants. The air quality index results show that the selected locations come under moderate air pollution.


Sign in / Sign up

Export Citation Format

Share Document