scholarly journals Membrane surface properties and their effects on real waste oil-in-water emulsion ultrafiltration

Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Marjana Simonič

Membrane surface properties and their effect on the efficiency of ultrafiltration (UF) of real waste oily emulsions was studied. Experiments were performed in cross-flow operation at total recycle condition in a lab-scale system. The ceramic UF membrane in the tubular type module was employed. During the experiments permeate flux was measured. The most important influential factors, such as temperature, TMP, and pH, were considered during the experiments. Zeta potential was measured in order to explain the phenomena on the membrane surface. The isoelectric point of the fouled membrane was shifted to the alkaline range. COD removal efficiency reached 89%. Gas chromatography measurements were performed in order to determine the composition of waste emulsions. SEM micrographs showed the formation of calcite on the membrane, which contributed to membrane fouling. Chemical cleaning was examined using alkaline and acid solutions, and a cleaning strategy was determined.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jianlong Hu ◽  
Xuanren Zhu ◽  
Deqiong Xie ◽  
Xianya Peng ◽  
Meng Zhu ◽  
...  

Abstract In this work, zwitterionic polyacrylonitrile (PAN)-based membranes were synthesized via surface grafting strategy for improving the antifouling properties. The copolymer membrane consisting of PAN and poly(hydroxyethyl methacrylate) segments, was cast via nonsolvent induced phase separation, and then treated with acryloyl chloride to tether with carbon-carbon double bonds. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) layers were grafted onto membrane surface via concerted reactions of radical grafting copolymerization and quaternization with 2-(dimethylamino)ethyl methacrylate) and 1, 3-propanesultone (1, 3-PS) as the monomers. The grafting degree (GD) of PSBMA layers increases with the incremental content of monomers, leading to the enhancement in membranes surface hydrophilicity. The permeation experiments show that the flux of the zwitterionic membrane increases and then decreases with the increasing GD value, because of the surface coverage of PSBMA layers. The zwitterionic membrane has excellent separation efficiency for oil-in-water emulsion, with the rejection of a higher value than 99%. The irreversible membrane fouling caused by oil adsorption has been suppressed, as proved by the cycle-filtration tests. These outcomes confirm that oil-fouling resistances of membranes are improved obviously by the surface grafting of zwitterionic PSBMA layers.


2022 ◽  
Vol 25 ◽  
Author(s):  
William de Melo ◽  
Giuliana Varela Garcia Lesak ◽  
Thamayne Valadares de Oliveira ◽  
Fernando Augusto Pedersen Voll ◽  
Alexandre Ferreira Santos ◽  
...  

Langmuir ◽  
1995 ◽  
Vol 11 (8) ◽  
pp. 2920-2925 ◽  
Author(s):  
Walter Torres ◽  
John C. Donini ◽  
Anton A. Vlcek ◽  
A. B. P. Lever

2020 ◽  
Vol 64 (3) ◽  
pp. 371-376
Author(s):  
Igor Gáspár ◽  
Réka Neczpál

Membrane filtration process can be intensified by using static mixers inside tubular membranes. Most of commercial static mixers are optimized for mixing fluids, not for membrane filtration. We have developed new turbulence promoter geometries designed for intensification of permeate flux and retention without significant pressure drop along the membrane. In previous experiments, we used metallic turbulence promoters, but in this work, FDM 3D printing technology was used to create these improved geometries, which are new in membrane filtration and they have the same geometry as existing metallic versions. New 3D printed objects were tested with filtration of stable oil-in-water emulsion. Our experiments proved that 3D printed static mixers might be as effective as metallic versions. The effect on initial flux and retention of oil was very similar. Pressure drop along membrane was slightly higher (but significantly lower from pressure drop along the membrane resulted by commercial static mixers, designed only for mixing fluids). Higher pressure drop may be the result of rougher surface due the layer-technology of 3D printing. This negative effect can be reduced by using a smaller nozzle (which will produce smaller layers) or smoothing the surface. PLA is material easier for printing, but from these two materials, PETG is a better choice due its higher operating temperature and better water-resist properties too.


Author(s):  
Sina Jahangiri Mamouri ◽  
Volodymyr V. Tarabara ◽  
André Bénard

Cross flow filtration (CFF) is a common membrane separation process with applications in food, biochemical and petroleum industries. In particular, membranes can be used for liquid-liquid separation processes such as needed in oil-water separation. A major challenge in cross flow filtration is membrane fouling. It can decrease significantly the permeate flux and a membrane’s efficiency. Membrane fouling can be mitigated by inducing shear on the membrane’s surface and this can be enhanced by inducing a swirl in the flow. In addition, a possible approach to improve membrane efficiency consists of repelling droplets/particles from the porous surface toward the centerline using a repulsive electric force. For this purpose, the surface of the membrane can be exposed to electric potential and droplets/particles are also induced to have the same electric charge. In this work, numerical simulations of charged non-deformable droplets moving within an axially rotating charged tubular membrane are performed. The results show that by increasing the electric potential on the membrane surface, the repelling force increases which obviously improves the grade efficiency of the membrane. However, the electric field gradients found in the flow field require large potentials on the membrane surface to observe a noticeable effect. Hence, a smaller solid cylinder is located in the centerline of the flow channel with zero potential. This solid cylinder enhances the electric field gradient in the domain which results in higher repelling forces and larger grade efficiency of the membrane at small potentials. The addition of a small cylinder in the flow field also improves the grade efficiency increases due to the higher shear stress near the membrane surface.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Danu Ariono ◽  
Anita Kusuma Wardani ◽  
Putu Teta Prihartini Aryanti ◽  
Ahmad Nurul Hakim ◽  
I Gede Wenten

Wastewater from electroplating industries is usually contaminated with high concentration of hazardous materials, such as nickel, copper, and chromium. Therefore, the electroplating wastewater is one of the environmental problems that require a novel solution to reduce risks for human and environment. Ultrafiltration is a promising technology to overcome this problem due to its ability to reject all suspended solids. However, membrane fouling still becomes a major obstacle in ultrafiltration processes. Fouling reduces the permeate flux and increases membrane operational costs due to membrane cleaning. In this work, fouling mechanism that occurred in polyacrylonitrile based ultrafiltration for electroplating wastewater treatment was investigated. The effects of trans-membrane pressure (TMP) and cross flow velocity on fouling mechanism were also studied. The results showed that in the first 20 minutes, intermediate blocking was occurred on the membrane surface, while cake formation was happened for the rest of filtration time. These results were applied for all TMP and cross flow velocity.


2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Igor Gaspar ◽  
Andras Koris ◽  
Zsolt Bertalan ◽  
Gyula Vatai

AbstractOily wastewaters are produced in large amounts in many fields of food, mechanical, and other types of industry. In order to protect the environment, wastewaters must not be discharged directly into sewers. First, they must be cleaned at least down to 50 mg L−1 of oil content (according to Hungarian standard). In previous research, the authors found that oil-in-water emulsions can be separated with filtration using ceramic ultrafiltration tubular membranes. The relatively high price of ceramic membranes can be compensated by the fact that this separation process can be significantly intensified by static mixers inside the tubular membranes. New generations of ceramic membranes are the ceramic capillary membranes. These two different types of membranes and their effects on permeate flux, oil retention and specific energy consumption were compared in this work. The results, obtained with a stable oil-in-water emulsion as feed, showed that the use of novel ceramic capillary membranes at optimal operating cross-flow rate and transmembrane pressure is reasonable. The results have also shown the advantage of static mixing in the lumen side of the membrane tube providing a wider range of satisfactory separation level and increased permeate flux.


Sign in / Sign up

Export Citation Format

Share Document