How many thick disk subsystems are there in the Milky Way Galaxy?

2021 ◽  
pp. 117-122
Author(s):  
V. A. MARSAKOV ◽  
M. L. GOZHA ◽  
V. V. KOVAL

It was shown that stellar populations of the Galaxy with the thick disk kinematics, namely globular clusters, field RR Lyrae variables (lyrids), and nearby field F - G stars, have different chemical compositions. Based on the analysis of the nature of the dependencies of [alpha/Fe] on [Fe/H] for these objects, it was concluded that the thick disk subsystem in the Galaxy is composite, and at least three components independently exist inside it. The oldest subsystem consists of the metal-rich globular clusters which were formed from a single protogalactic cloud shortly after onset of the explosions of type Ia supernova in it. Then a subsystem of the field thick disk stars was formed as a result of the "heating" of the stars of the primary thin disk already formed in the Galaxy by a rather massive dwarf satellite galaxy which fell onto the Galaxy. And, finally, the subsystem of field stars (including the lyrids) with the kinematics of not only the thick, but even the thin disk that fell onto the Galaxy from this captured satellite galaxy.

Author(s):  
B. Barbuy

AbstractThe Galactic bulge is the least studied component of our Galaxy. Yet, its formation and evolution are key to understand the formation of the Galaxy itself. Studies on the Galactic bulge have increased significantly in the last years, but still there are many points of controversy. This volume contains several contributions from experts in different aspects of the bulge. Issues discussed include the following: the presence of an old spheroidal bulge, or identification of its old stellar population with the thick disk or halo; fraction of stars younger than 10 Gyr is estimated to be of < 5 to 22% depending on method and authors; multiple populations or only a metal-poor and a metal-rich ones; spheroidal or ellipsoidal distribution of RR Lyrae; formation of the bulge from early mergers or from secular evolution of the bar; different methods of mapping extinction; selection and identification of bulge globular clusters.


1995 ◽  
Vol 164 ◽  
pp. 386-386
Author(s):  
C. Soubiran ◽  
M.N. Perrin ◽  
R. Cayrel ◽  
E. Chereul

The aim of our stellar population study is to investigate the kinematical and chemical characteristics of the thin disk, thick disk and halo of the Galaxy. We have selected 51 stars in 2 astrometric and photometric surveys at l = 42°, b = +79° (Soubiran 1992) and l = 167°, b = +47° (Ojha et al. 1994), on the basis of the Reduced Proper Motion Diagram. They were observed with the 193cm telescope at Observatoire de Haute-Provence, with the CARELEC spectrograph (dispersion of 66Å/mm, FWHM of 3.0Å, range λλ4600 – 5500Å), together with 43 comparison stars with known fundamental parameters. The derivation of Teff, logg and [Fe/H] was done differentially using a grid of synthetic spectra and the comparison stars, as described in Cayrel et al. (1991). Twenty of the target stars were found to be more deficient than −0.5. In the (V, [Fe/H]) distribution, the halo stars are clearly separated from the other stars with a mean of (V, [Fe/H]) ≃ (−210km/s, – 1.4dex). Because of the small size of the sample, it was not possible to discriminate the thick disk from the thin disk. We have taken 200 more spectra, and with these new observations, we hope to be able to deconvolve the 3 populations in the (U, V, W, [Fe/H]) space as we did previously with the (U, V) velocity (Soubiran 1993).


2004 ◽  
Vol 21 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Akihiko Ibukiyama

AbstractWe derive age–metallicity relations (AMRs) and orbits for the 1658 solar neighbourhood stars for which accurate distances are measured by the Hipparcos satellite. The sample comprises 1382 thin disk stars, 229 thick disk stars, and 47 halo stars according to their orbital parameters. We find a considerable scatter for thin disk AMRs along the one-zone Galactic chemical evolution (GCE) model. Orbits and metallicities of thin disk stars show no clear relation to each other. The scatter along the AMR exists even if stars with the same orbits are selected. We examine simple extensions of one-zone GCE models which account for inhomogeneity in the effective yield and inhomogeneous star formation rate in the Galaxy. Both extensions of the one-zone GCE model cannot account for the scatter in the age–[Fe/H]–[Ca/Fe] relation simultaneously. We conclude, therefore, that the scatter along the thin disk AMR is an essential feature in the formation and evolution of the Galaxy. The AMR for thick disk stars shows that star formation terminated 8 Gyr ago in the thick disk. As previously reported, thick disk stars are more Ca-rich than thin disk stars with the same [Fe/H]. We find that thick disk stars show a vertical abundance gradient. These three facts — AMR, vertical gradient, and [Ca/Fe]–[Fe/H] relation — support monolithic collapse and/or accretion of satellite dwarf galaxies as likely thick disk formation scenarios.


2020 ◽  
Vol 499 (4) ◽  
pp. 4863-4875
Author(s):  
Joel L Pfeffer ◽  
Sebastian Trujillo-Gomez ◽  
J M D Kruijssen ◽  
Robert A Crain ◽  
Meghan E Hughes ◽  
...  

ABSTRACT The ages and metallicities of globular clusters (GCs) are known to be powerful tracers of the properties of their progenitor galaxies, enabling their use in determining the merger histories of galaxies. However, while useful in separating GCs into individual accretion events, the orbits of GC groups themselves have received less attention as probes of their progenitor galaxy properties. In this work, we use simulations of galaxies and their GC systems from the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE project to explore how the present-day orbital properties of GCs are related to the properties of their progenitor galaxies. We find that the orbits of GCs deposited by accretion events are sensitive to the mass and merger redshift of the satellite galaxy. Earlier mergers and larger galaxy masses deposit GCs at smaller median apocentres and lower total orbital energy. The orbital properties of accreted groups of GCs can therefore be used to infer the properties of their progenitor galaxy, though there exists a degeneracy between galaxy mass and accretion time. Combining GC orbits with other tracers (GC ages, metallicities) will help to break the galaxy mass/accretion time degeneracy, enabling stronger constraints on the properties of their progenitor galaxy. In situ GCs generally orbit at lower energies (small apocentres) than accreted GCs, however they exhibit a large tail to high energies and even retrograde orbits (relative to the present-day disc), showing significant overlap with accreted GCs. Applying the results to Milky Way GCs groups suggests a merger redshift z ∼ 1.5 for the Gaia Sausage/Enceladus and z &gt; 2 for the ‘low-energy’/Kraken group, adding further evidence that the Milky Way had two significant mergers in its past.


2020 ◽  
Vol 641 ◽  
pp. A96 ◽  
Author(s):  
A. Savino ◽  
A. Koch ◽  
Z. Prudil ◽  
A. Kunder ◽  
R. Smolec

The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy-peanut structure that constitutes most of the central stellar mass. The nature of this spheroidal population, whether it is a small classical bulge, the innermost stellar halo, or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to play host to some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of 13.41 ± 0.54 Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows a remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at rGC ∼ 5 kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and consider whether they can provide alternative explanations for the properties of our sample. We conclude that within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars. This is a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.


2018 ◽  
Vol 616 ◽  
pp. A18 ◽  
Author(s):  
H. Ernandes ◽  
B. Barbuy ◽  
A. Alves-Brito ◽  
A. Friaça ◽  
C. Siqueira-Mello ◽  
...  

Aims. Globular clusters are tracers of the history of star formation and chemical enrichment in the early Galaxy. Their abundance pattern can help understanding their chemical enrichment processes. In particular, the iron-peak elements have been relatively little studied so far in the Galactic bulge. Methods. The main aim of this work is to verify the strength of abundances of iron-peak elements for chemical tagging in view of identifying different stellar populations. Besides, the nucleosynthesis processes that build these elements are complex, therefore observational data can help constraining theoretical models, as well as give suggestions as to the kinds of supernovae that enriched the gas before these stars formed. Results. The abundances of iron-peak elements are derived for the sample clusters, and compared with bulge field, and thick disk stars. We derived abundances of the iron-peak elements Sc, V, Mn, Cu, and Zn in individual stars of five bulge globular clusters (NGC 6528, NGC 6553, NGC 6522, NGC 6558, HP 1), and of the reference thick disk/or inner halo cluster 47 Tucanae (NGC 104). High resolution spectra were obtained with the UVES spectrograph at the Very Large Telescope over the years. Conclusions. The sample globular clusters studied span metallicities in the range –1.2 ≲ [Fe/H] ≲ 0.0. V and Sc appear to vary in lockstep with Fe, indicating that they are produced in the same supernovae as Fe. We find that Mn is deficient in metal-poor stars, confirming that it is underproduced in massive stars; Mn-over-Fe steadily increases at the higher metallicities due to a metallicity-dependent enrichment by supernovae of type Ia. Cu behaves as a secondary element, indicating its production in a weak-s process in massive stars. Zn has an alpha-like behaviour at low metallicities, which can be explained in terms of nucleosynthesis in hypernovae. At the metal-rich end, Zn decreases with increasing metallicity, similarly to the alpha-elements.


2011 ◽  
Vol 7 (S283) ◽  
pp. 408-409
Author(s):  
Alexander F. Kholtygin ◽  
Yulia V. Milanova ◽  
Igor' I. Nikiforov ◽  
Olga V. Vasyakina

AbstractModern data concerning the planetary nebulae (PNe) in the bulge, bar and disk of the Milky Way are used to study the chemical history of bulge. We show that the abundance pattern is similar for PNe in the bulge and Peimbert's type II PNe. We also found that the globular clusters (GCs), especially their metal-rich disk subsystem, form on metallicity maps a bar-like structure which parameters are very close to those for the Galactic bar. These results evidence an old age of the Galactic bulge and bar. We propose a scenario of the successive star formation in the bulge, bar and thin disk.


2020 ◽  
Vol 636 ◽  
pp. A107 ◽  
Author(s):  
M. Bellazzini ◽  
R. Ibata ◽  
K. Malhan ◽  
N. Martin ◽  
B. Famaey ◽  
...  

We reconsider the case for the association of Galactic globular clusters to the tidal stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) using Gaia DR2 data. We used RR Lyrae variables to trace the stream in 6D and we selected clusters matching the observed stream in position and velocity. In addition to the clusters residing in the main body of the galaxy (M 54, Ter 8, Ter 7, Arp 2) we confirm the membership of Pal 12 and Whiting 1 to the portion of the trailing arm populated by stars lost during recent perigalactic passages. NGC 2419, NGC 5634, and NGC 4147 are very interesting candidates, possibly associated with more ancient wraps of the Sagittarius stream. With the exception of M 54, which lies within the stellar nucleus of the galaxy, we note that all these clusters are found in the trailing arm of the stream. The selected clusters are fully consistent with the [Fe/H] versus [Mg/Fe], [Ca/Fe] patterns and the age-metallicity relation displayed by field stars in the main body of Sgr dSph.


2000 ◽  
Vol 176 ◽  
pp. 263-263
Author(s):  
Vincenzo Ripepi ◽  
Filippina Caputo ◽  
Vittorio Castellani ◽  
Marcella Marconi

AbstractWe applied the pulsational method (Caputo 1997) to derive the distances to a sample of galactic globular clusters with well-observed RR Lyrae populations. To apply the method we calculated a set of pulsational theoretical boundaries of the instability strip for the range of masses and chemical compositions spanned by the analysed clusters. In this way we were able to fix simultaneously the apparent distance modulus and the absolute visual magnitude of the RR Lyrae population of each cluster in the sample. As a result we derived the following relations:


Sign in / Sign up

Export Citation Format

Share Document