The Limits of Applicability of the Method of Discontinuous Solutions in the Study of Pipe Drawing Processes

2020 ◽  
Vol 22 (4) ◽  
pp. 18-30
Author(s):  
Alexander Udalov ◽  

Introduction. Non-contact deformation of the workpiece material, which occurs along the boundaries of the deformation zone, is one of the main factors determining the energy-power parameters of pipe reduction processes. The most widespread practice in the design of metal forming processes is the method of discontinuous solutions, which makes it quite simple to take into account non-contact deformation in numerical simulation of processes. However, for most processes in the technical literature there are no systematic practical recommendations on the application of this method, which inevitably leads to a mismatch of theoretical principles and practice. The aim of the work is to determine the limits of applicability of the method of discontinuous solutions for processes of faultless drawing of pipes through a conical die, depending on the geometric parameters of the workpiece, tool, as well as the degree of deformation and hardening of the processed material. Research Methods. The model of the deformation zone for the process of flawless drawing is considered in two versions: by the method of discontinuous solutions and taking into account non-contact bends of the pipe wall. From the condition of the balance of the shear forces acting on the conditional shear surface and the bending moments caused by the bending of the pipe wall, under various deformation conditions, the boundary values of the thickness parameter are determined, at which it is advisable to carry out numerical simulation of the drawing processes using the discontinuous solution method. In this case, the calculations are performed separately for two sections of the deformation zone corresponding to the bending of the pipe wall at the entrance to and exit from the die. Results and discussions. The numerical implementation of the obtained dependences showed that at the entrance to the deformation zone, the boundary value of the thickness parameter increases with an increase in the taper angle of the die and the hood for the transition, but decreases with an increase in the anti-tension stress and the thickness parameter of the initial workpiece. At the exit from the deformation zone, the boundary value of the thick-walled parameter increases with an increase in the taper angle of the die and decreases with an increase in the stretch coefficient for the transition and the thick-walled parameter of the initial billet. If the parameter of the thickness of the initial billet exceeds the boundary value, then in numerical modeling it is advisable to use the method of discontinuous solutions. If it does not exceed, then other methods and models should be used. The results of a theoretical study can be used in the design of pipe drawing processes.

1989 ◽  
Vol 111 (1) ◽  
pp. 87-93 ◽  
Author(s):  
A. Mioduchowski ◽  
M. G. Faulkner ◽  
B. Kim

Optimization of a second-order multiply-connected inhomogeneous boundary-value problem was considered in terms of elastic torsion. External boundary and material proportions are the applied constraints in finding optimal internal configurations of the cross section. The optimization procedure is based on the numerical simulation of the membrane analogy and the results obtained indicate that the procedure is usable as an engineering tool. Optimal solutions are obtained for some representative cases of the torsion problem and they are presented in the form of tables and figures.


Author(s):  
Oscar Darío Monsalve Cifuentes ◽  
Jonathan Graciano Uribe ◽  
Diego Andrés Hincapié Zuluaga

In this work, a 76 mm diameter propeller-type turbine is numerically investigated using a parametric study and computational fluid dynamics. The three-dimensional model of the turbine is modeled using data available in the bibliography. A mesh independence study is carried out utilizing a tetrahedron-based mesh with inflation layers around the turbine blade and the pipe wall. The best efficiency point is determined by the maximum hydraulic efficiency of 64.46 %, at a flow rate of 9.72x10-3 m3/s , a head drop of 1.76 m, and a mechanical power of 107.83 W. Additionally, the dimensionless distance y+, pressure, and velocity contours are shown.


2013 ◽  
Vol 25 (6) ◽  
pp. 543-554 ◽  
Author(s):  
Tomas Micunek ◽  
Zuzana Schejbalova ◽  
Drahomir Schmidt

Solid barriers represent danger for the driver in case of traffic lane escape. This threat can be represented by a drainage ditch culvert face. The access bridge is not usually conspicuous enough near the traffic lane so that the driver could ditch and crash this barrier in case of an exceptional situation such as avoidance manoeuvres. This work deals with a technical solution of access bridges with an integrated deformation zone which was designed on the ground of a detailed analysis of current types of the construction. The new technical solution was proved by means of a numerical simulation of passenger car impact and compared with the current design of culvert faces.


2012 ◽  
Vol 217-219 ◽  
pp. 1397-1402
Author(s):  
Yong Fei Gu ◽  
Qian Ying Huang ◽  
Cun Jie Fan ◽  
Jun Ting Luo

On the basis of the uniformly distributed load assumption, powder flexible cavity forming of cup shell is analyzed by MSC.Marc. The stress and strain parameters for different deformation zone are obtained. The technology is compared with rigid die deep drawing by using of point tracer method. The results prove that the forming limit can be improved and defects can be prevented when parts are formed by powder flexible cavity forming technology, which present the theoretical basis for practical application for powder flexible cavity forming technology.


2013 ◽  
Vol 364 ◽  
pp. 488-492 ◽  
Author(s):  
Yong Lei Su ◽  
Wu Zi Yang ◽  
Chang Ping Wang

Upsetting is a common method in the production of connectors, a new technology to avoid instability of long pipe under compression was taken in this paper, which would get the upsetting shape of long pipe by changing the length of deformation zone. Forming process was simulated by finite element, and some mechanisms of metal deformation and load were obtained. The simulation results showed that: instability was not occurred and one could have specified shape by using conical die upsetting only once. Then the upsetting experiment was conducted, the trail had a good match with simulation results, which expanded upsetting rules, and provided a reference for design of die.


Sign in / Sign up

Export Citation Format

Share Document