scholarly journals A brief overview of the causes, impacts and amelioration of soil water repellency – a review

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S21-S29 ◽  
Author(s):  
P.D. Hallett

This article describes the phenomenon of soil water repellency, starting from the fundamental principals of water transport and storage in soil. Soil water repellency is a reduction in the rate of wetting and retention of water in soil caused by the presence of hydrophobic coatings on soil particles. For crop production and the maintenance of amenity turf, water repellency can stress plants resulting in poorer yield quality or grass ‘playability’, respectively. The biological causes of water repellency, primarily the influence of fungi, will be discussed, as an understanding of the source of the problem will be beneficial in developing solutions. Exacerbation of repellency through climate change and the use of ‘engineered’ soils for amenity surfaces will be demonstrated using research findings from around the globe. In developing solutions to soil water repellency, its positive benefits, if maintained at very low levels, need to be considered. Water repellency is a key process in the physical stabilisation of soil and its impact on evaporation also needs to be considered. Before developing a rapid solution to repellency based only on water transport rates, a holistic understanding of the impacts on soil water relations is essential.

Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

Soil water repellency (SWR) was measured for a 28 yr field study under irrigation on a clay loam Dark Brown soil in southern Alberta. The objectives were to study the effect of legume-cereal crop rotations, feedlot manure, and phosphorus (P) fertilizer application on soil hydrophobicity (SH) and soil water repellency index (RI) under irrigation. Mean SH and RI were similar (P > 0.05) for a legume-cereal and cereal rotation, and were unaffected by P fertilization. However, P fertilization shifted the RI classification from slight to sub-critical. In contrast, SH was significantly greater for manured than non-manured treatments, while RI was unaffected. Soil organic carbon (SOC) concentration was significantly (P ≤ 0.05) correlated with SH (r=0.74), but not with RI (r=-0.17). This suggested a closer association between the quantity of SOC and quantity of hydrophobic compounds (SH method) compared to the hydrophobic coatings inhibiting infiltration of water (RI method). No significant correlation between SH and RI (r=-0.09) suggests that SH is not a good predictor of SWR using the RI method. Overall, manure application increased SH and P fertilization shifted the RI classification from slight to sub-critical. In contrast, legume-cereal rotations had no influence on SH and SWR using RI method compared to continuous cereal.


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 662-666
Author(s):  
Lusheng Zeng ◽  
Jiayang Liu ◽  
Robert N. Carrow ◽  
Paul L. Raymer ◽  
Qingguo Huang

Organic coatings on sand particles can cause soil water repellency (SWR) where a soil does not spontaneously wet; this leads to challenges in water management and crop production. In laboratory studies, we evaluated a novel approach using direct application of 10 enzymes at three (low, medium, high) dosages to remediate SWR on two sand turfgrass soils in a 3-day incubation study and a second study at high dosage with 1-day incubation. A soil:solution ratio of 1:1 (10 g soil and 10 mL solution) was used and a deionized water control included. For Soil 7, a very strongly hydrophobic soil from a localized dry spot turfgrass area with a water drop penetration time (WDPT) of 7440 seconds (untreated) and 332 to 338 seconds (water-treated), the high dosage rates of laccase, chitinase, and protease at 1 and 3 days incubation resulted in WDPT of less than 60 seconds (i.e., hydrophilic soil). Pectinase exhibited similar results only in the 3-day incubation study. On the strongly hydrophobic Soil 21 (WDPT of 655 seconds untreated; 94 to 133 water-treated) from the dry area of a fairy ring-affected area on a turfgrass site, high dosages of chitinase, laccase, pectinase, and protease reduced WDPT to less than 60 seconds in both studies; and medium dosage rates were also effective for all but protease in the 3-day incubation study. Each of the four most effective enzymes for reducing WDPT, noted previously, demonstrated a significant exponential or logarithmic relationship between decreasing WDPT and increasing enzyme dosage. Further studies in field situations will be required to determine enzyme effectiveness on SWR and water management.


Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

2014 ◽  
Vol 65 (3) ◽  
pp. 360-368 ◽  
Author(s):  
I. Kim ◽  
R. R. Pullanagari ◽  
M. Deurer ◽  
R. Singh ◽  
K. Y. Huh ◽  
...  

2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

2018 ◽  
Vol 33 (4) ◽  
pp. 661-674 ◽  
Author(s):  
Vincenzo Alagna ◽  
Massimo Iovino ◽  
Vincenzo Bagarello ◽  
Jorge Mataix‐Solera ◽  
Lubomir Lichner

Sign in / Sign up

Export Citation Format

Share Document