scholarly journals  Effect of 2,4-D as a novel inducer of embryogenesis in microspores of Brassica napus L.

2011 ◽  
Vol 47 (No. 3) ◽  
pp. 114-122 ◽  
Author(s):  
S.H. Ardebili ◽  
M.E. Shariatpanahi ◽  
R. Amiri ◽  
M. Emamifar ◽  
M. Oroojloo ◽  
...  

The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) applied at high concentrations for a short time was investigated as a novel stress for induction of microspore embryogenesis for the first time. Brassica napus L. cvs. Topas and Hyola 420 were used as model plants for testing this hypothesis. Microspores were subjected to 2,4-D at 4 concentrations (15, 25, 35 and 45 mg/l) for 15–45 min while the classical heat shock was used as the control treatment. Among 2,4-D treatments in Topas, the highest yield of torpedo-stage embryos was achieved at 15 mg/l 2,4-D for 30 min while more normal plantlets were produced when 2,4-D (25 mg/l for 30 min) was applied to the microspores. In Hyola 420 the results showed a lower number of embryos and normal plantlets at all concentrations of 2,4-D. Although Hyola 420 was almost equally embryogenic as Topas after heat shock treatment, large differences between genotypes (concerning embryogenic response) occurred after 2,4-D treatment. However, the mean number of embryos and regenerants was higher in heat shock as compared to 2,4-D induced stress (one magnitude of order). According to the results obtained, 2,4-D can be introduced as a new stress for induction of embryogenesis in microspores similarly like in zygotic and somatic cells. This novel stress is very important for plant species whose microspores are extremely sensitive to classical stresses.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 206
Author(s):  
Cheng Zhang ◽  
Yue Su ◽  
Yanyou Wu ◽  
Haitao Li ◽  
Ying Zhou ◽  
...  

The nutrient metabolism, growth and development of plants are strongly affected by its nutrient plunder, and plants have different adaptive mechanisms to low-nutrient environments. The electrophysiological activities involve almost all life processes of plants. In this study, the active transport flow of nutrient (NAF) and nutrient plunder capacity (NPC) of plants were defined based on leaf intrinsic impedance (IZ), capacitive reactance (IXc), inductive reactance (IXL) and capacitance (IC) to evaluate the nutrient plunder capacity of plants for the first time. The results indicate that Orychophragmus violaceus had higher (p < 0.01) NPC and IC and lower (p < 0.01) IR, IXc, IXL and IZ as compared to Brassica napus L., which supports a superior ion affinity and that it could be better adapted to low-nutrient environments. UAF and NPC of plants exhibited good correlations with crude protein, crude ash and water content, and precisely revealed the plunder capacity and adaptive strategies of plants to nutrients. The present work highlights that O. violaceus had superior NPC and ion affinity compared with B. napus, and provided a novel, rapid, reliable method based on the plant’s electrophysiological information for real-time determination of the nutrient plunder capacity of plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyuan Li ◽  
Sjur Sandgrind ◽  
Oliver Moss ◽  
Rui Guan ◽  
Emelie Ivarson ◽  
...  

Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene editing technique effectively in research and breeding of rapeseed (Brassica napus L.). The present study describes for the first time a rapid and efficient protocol for the isolation, regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application in gene editing. Protoplasts isolated from leaves of 3–4 weeks old were cultured in MI and MII liquid media for cell wall formation and cell division, followed by subculture on shoot induction medium and shoot regeneration medium for shoot production. Different basal media, types and combinations of plant growth regulators, and protoplast culture duration on each type of media were investigated in relation to protoplast regeneration. The results showed that relatively high concentrations of NAA (0.5 mg l−1) and 2,4-D (0.5 mg l−1) in the MI medium were essential for protoplasts to form cell walls and maintain cell divisions, and thereafter auxin should be reduced for callus formation and shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were required, and among all the combinations tested, 2.2 mg l−1 TDZ in combination with auxin 0.5 mg l−1 NAA gave the best result with up to 45% shoot regeneration. Our results also showed the duration of protoplast culture on different media was critical, as longer culture durations would significantly reduce the shoot regeneration frequency. In addition, we have optimized the transfection protocol for rapeseed. Using this optimized protocol, we have successfully edited the BnGTR genes controlling glucosinolate transport in rapeseed with a high mutation frequency.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 839
Author(s):  
Dorota Weigt ◽  
Idzi Siatkowski ◽  
Magdalena Magaj ◽  
Agnieszka Tomkowiak ◽  
Jerzy Nawracała

Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro culture thus far. Therefore, we studied the impact of ionic liquids on the ability to undergo microspore embryogenesis in anther cultures of wheat. Two embryogenic and two recalcitrant genotypes were used for this study. Ten combinations of ionic liquids and 2,4-dichlorophenoxyacetic acid were added to the induction medium. In most cases, they stimulated induction of microspore embryogenesis and green plant regeneration more than a control medium supplemented with only 2,4-dichlorophenoxyacetic acid. Two treatments were the most favorable, resulting in over two times greater efficiency of microspore embryogenesis induction in comparison to the control. The effect of breaking down the genotype recalcitrance (manifested by green plant formation) was observed under the influence of 5 ionic liquids treatments. Summing up, ionic liquids had a positive impact on microspore embryogenesis induction and green plant regeneration, increasing the efficiency of these phenomena in both embryogenic and recalcitrant genotypes. Herbicidal ionic liquids can be successfully used in in vitro cultures.


Planta ◽  
1994 ◽  
Vol 195 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Jan H. G. Cordewener ◽  
Ronald Busink ◽  
Jan A. Traas ◽  
Jan B. M. Custers ◽  
Hans J. M. Dons ◽  
...  

2002 ◽  
Vol 29 (5) ◽  
pp. 575 ◽  
Author(s):  
Nello Ceccarelli ◽  
Alessandra Mondin ◽  
Roberto Lorenzi ◽  
Piero Picciarelli ◽  
Fiorella Lo Schiavo

In the present work, the characterization of two variant cell lines of carrot capable of growing in high (92 μmol L–1) concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) is reported. Both these cell lines (4w77 and 4w13) show a significantly lower uptake of 2,4-D with respect to wild-type (wt) cells. In contrast to wt cells, influx of IAA is not reduced by the addition of 100 μM 2,4-D and the presence of this compound appears to stimulate IAA uptake. When grown in the presence of high concentrations of 2,4-D, both 4w77 and 4w13 cells show behavioural differences: instead of lowering the endogenous level of free IAA, the two resistant lines react to the high exogenous concentrations of auxin by raising the level of the free hormone. In 4w77 cells, this is accomplished by reduction of auxin released in the external medium or converted to amide-linked conjugates. In 4w13 cells, the final level of endogenous IAA is an equilibrium between increased synthesis of IAA and a massive release into the medium of the ester- and free-forms of IAA. Both cell lines show disturbances in embryogenesis: line 4w77 forms globular embryos that only mature into aberrant forms having multiple axes, whereas line 4w13 has completely lost its morphogenic capacity.


2019 ◽  
Author(s):  
Bogdan-Marian Tofanica ◽  
Emanuela Callone

We characterized for the first time the rapeseed stalk’s cellulose and it has been found that native cellulose occurs as Cellulose I allomorph, while α-cellulose consists of particular crystalline structures as seen in cellulose II.


Sign in / Sign up

Export Citation Format

Share Document