scholarly journals Distribution of nematodes in wetland soils with difference distance from the Bohai sea 359–366

2008 ◽  
Vol 54 (No. 8) ◽  
pp. 359-366 ◽  
Author(s):  
H.Y. Wu ◽  
X.X. Li ◽  
L.B. Shi ◽  
Z.H. Wang ◽  
F.Y. Ma

In order to elucidate the distribution of soil nematodes in coastal wetlands and the effect of different distance from the sea line on soil nematode communities, we investigated the community structure of soil nematodes in one wetland perpendicularly oriented from Bohai sea coastline. In June 2006, soil samples were collected from the Yellow River Delta wetlands, in Dongying city of Shandong Province, China. Soil nematode communities were analyzed at the depths of 0–10 and 10–20 cm. The results showed that plant parasite nematodes were the most abundant trophic groups in both depths and at four sites. The average relative abundance was 91.33% of the nematode community. Several ecological indices which reflected soil nematode community structure, diversity, maturity and plant parasitism were compared in these four sites. The results indicated that the maturity index (MI) and plant parasitism index (PPI) were more sensitive than the other indices for assessing the response of soil nematode communities to soil of coastal wetland.

2015 ◽  
Vol 52 (1) ◽  
pp. 41-49
Author(s):  
A. Čerevková ◽  
L Cagáň

Summary The aim of this study was to determine the effects of Bt maize hybrid cultivation on soil nematode communities in two field trials, as well as to analyse other factors (fertilisation and moisture) responsible for the community structure of soil nematodes. Nematode communities were studied in maize plots at the locality of Borovce in western Slovakia. During 2012 and 2013, hybrids DK440 and DKC3871 (conventional) or DKC4442YG and DKC3872YG (Bt maize, event MON810) were sown in 10 repetitions each. Nematodes were extracted from soil samples collected at the maize flowering (July 11, 2012 and July 30, 2013). Altogether, 39 nematode species belonged to 35 genera were identified in two maize variants. The dominant taxa in both variants were Acrobeloides nanus, Ce-phalobus persegnis, Aphelenchoides composticola, Aphelenchus avenae, Eudorylaimus carteri and Filenchus vulgaris. Calculation of the maturity index, plant parasitic index, enrichment index and structure index did not confirm any clear influence of year or hybrid type on soil nematode communities. The proportional representation of cp-1, cp-2 and cp-3-5 groups of nematode fauna indicated conditions of low stability and high stress. Faunal profiles representing the structure and enrichment conditions of the soil food web showed an environment with a high C:N ratio and high levels of fungal feeders. Based on the calculation of the metabolic footprint of nematodes in the soil food web, a difference between the isoline maize variant and Bt maize variant in 2012 was found, but this difference was not readily apparent in 2013. The occurrence of nematodes, their abundance, proportion of feeding types and selected ecological indices did not depend on the type of maize hybrid (Bt or non-Bt). Thus, the cultivation of genetically modified maize did not directly influence nematode populations. The application of fertiliser at certain periods does not influence the nematode community. The observed significant higher abundance of nematodes was correlated with soil moisture.


2021 ◽  
Author(s):  
Fengjuan Pan ◽  
Ruirui Yan ◽  
Jinling Zhao ◽  
Linghao Li ◽  
Yanfeng Hu ◽  
...  

Abstract Aims Grazing is a key driver of plant communities and soil functions in grassland ecosystems. Soil nematodes play a vital role in soil ecological functions. however, few studies have explored how grazing shapes soil nematode community in different soil layers.Methods we investigated the composition, abundance, diversity, metabolic footprint, and food web metrics of soil nematodes over a gradient of grazing in the 0-10 cm and 10-20 cm soil layers in a meadow steppe. The relationships between nematode community structure and biotic and abiotic factors were analyzed by principal component analysis (PCA) and structural equation model (SEM) analysis. Results Light grazing tended to increase the abundance of soil nematodes. Intensive grazing decreased the biomass carbon and metabolic footprints of plant parasites, fungivores, and total soil nematodes in 0-10 cm soils. There was no difference in the biomass carbon and metabolic footprints of soil nematodes among different grazing intensities in the 10-20 cm soil layer. Soil moisture, aboveground biomass, belowground biomass and Shannon diversity of grass contributed more to changes in soil nematode composition in both soil layers. In the 0-10 cm soil layer, grazing directly and indirectly affected soil nematode diversity via soil moisture and aboveground biomass, while grazing directly affected soil nematode diversity in 10-20 cm soil layer. Conclusions Our results indicate that soil depth can weaken the effect of grazing intensities on soil nematode fauna. Grazing affected the soil nematode community structure via different paths in different soil layers.


Nematology ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Jie Zhao ◽  
Cancan Zhao ◽  
Songze Wan ◽  
Xiaoli Wang ◽  
Lixia Zhou ◽  
...  

Liming can affect soil biota through alterations in soil pH and soil structure. Many earlier studies monitored the responses of soil nematode communities to lime application but they did not come to a consensus and did not use indices of soil nematode community and multivariate statistical approaches developed over the past two decades. The present research explored the short-term effects of lime application on soil nematode communities in an acrisol in three Eucalyptus plantations in southern China. Nematodes were sampled from control and lime-treated plots at three periods from October 2011 to February 2012 at 0-10 cm and 10-20 cm soil depths. Repeated measures ANOVA showed that lime application significantly reduced the abundance of herbivores at 10-20 cm depth during the study. Lime application tended to increase the bacterivore index at 0-10 cm depth over time. Principal response curves of soil nematode community structure, in terms of nematode trophic group composition, revealed that the differences between control and lime application treatments increased over time, primarily because of the decline of fungivores in plots treated with lime. The decline in fungivores resulted mainly from declines of Filenchus and Ditylenchus. The results suggest that the fungal-mediated decomposition channel in the soil food web was suppressed by lime application. Our study also demonstrated that the sensitivity of different nematode genera to lime application varied widely, even for genera within the same trophic group. In particular, the abundance of several bacterivorous genera (Prismatolaimus, Plectus, Wilsonema, Protorhabditis, Diploscapter and Heterocephalobus) gradually declined and that of Rhabditonema at 0-10 cm depth gradually increased following lime application during the study; two herbivorous genera, Trophotylenchulus and Helicotylenchus, had opposite responses to lime application at 0-10 cm depth. Integrating univariate statistical approaches with multivariate approaches facilitated the analysis of soil nematode responses to lime application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahid Afzal ◽  
Humira Nesar ◽  
Zarrin Imran ◽  
Wasim Ahmad

AbstractDespite enormous diversity, abundance and their role in ecosystem processes, little is known about how community structures of soil-inhabiting nematodes differ across elevation gradient. For this, soil nematode communities were investigated along an elevation gradient of 1000–2500 masl across a temperate vegetation in Banihal-Pass of Pir-Panjal mountain range. We aimed to determine how the elevation gradient affect the nematode community structure, diversity and contribution to belowground carbon assimilation in the form of metabolic footprint. Our results showed that total nematode abundance and the abundance of different trophic groups (fungivores, herbivores and omnivores) declined with the increase of elevation. Shannon index, generic richness and evenness index indicated that nematode communities were more diverse at lower elevations and declined significantly with increase in elevation. Nematode community showed a pattern of decline in overall metabolic footprint with the increase of elevation. Nematode abundance and diversity proved to be more sensitive to elevation induced changes as more abundant and diverse nematode assemblage are supported at lower elevations. Overall it appears nematode abundance, diversity and contribution to belowground carbon cycling is stronger at lower elevations and gradually keep declining towards higher elevations under temperate vegetation cover in Banihal-pass of Pir-Panjal mountain range.


2011 ◽  
Vol 74 (7) ◽  
pp. 2002-2012 ◽  
Author(s):  
Sónia Chelinho ◽  
Klaus Dieter Sautter ◽  
Anabela Cachada ◽  
Isabel Abrantes ◽  
George Brown ◽  
...  

2014 ◽  
Vol 6 (8) ◽  
pp. 112-121 ◽  
Author(s):  
Akyazi Faruk ◽  
Yildiz Senol ◽  
Firat Felek Anil

2016 ◽  
Vol 7 (1) ◽  
pp. 9-14
Author(s):  
Duong Duc Hieu

Soil nematodes play an important role in indication for assessing soil environments and ecosystems. Previous studies of nematode community analyses based on molecular identification have shown to be useful for assessing soil environments. Here we applied PCR-DGGE method for molecular analysisoffive soil nematode communities (designed as S1 to S5) collected from four provinces in Southeastern Vietnam (Binh Duong, Ba Ria Vung Tau, Binh Phuoc and Dong Nai) based on SSU gene. By sequencing DNA bands derived from S5 community sample, our data show 15 species containing soil nematode, other nematode and non-nematode (fungi) species. Genus Meloidogyne was found as abundant one. The genetic relationship of soil nematode species in S5 community were determined by Maximum Likelihood tree re-construction based on SSU gene. This molecular approach is applied for the first time in Vietnam for identification of soil nematode communities. Tuyến trùng đất đóng vai trò chỉ thị quan trọng trong công tác đánh giá môi trường và hệ sinh thái đất. Các nghiên cứu trước đây đã cho thấy lợi ích của việc phân tích cộng đồng tuyến trùng đất bằng định danh sinh học phân tử đối với việc đánh giá môi trường đất. Ở đây, chúng tôi ứng dụng phương pháp PCR-DGGE dựa trên gene SSU để phân tích năm (ký hiệu từ S1 đến S5) cộng đồng tuyến trùng đất thuộc các vùng trồng chuyên canh cây hồ tiêu ở miền nam Việt Nam (Bình Dương, Bà Rịa Vũng Tàu, Bình Phước và Đồng Nai). Bằng cách giải trình tự các vạch của mẫu tuyến trùng S5, kết quả cho thấy cộng đồng tuyến trùng này có 15 loài gồm nhóm tuyến trùng đất, nhóm các loại tuyến trùng khác và nhóm không phải tuyến trùng (nấm) và trong đó Meloidogyne là giống ưu thế. Mối quan hệ di truyền của các các loài tuyến trùng đất thuộc cộng đồng S5 được xác định bằng việc thiết lập cây phát sinh loài Maximum Likelihood dựa trên gene SSU. Đây là nghiên cứu đầu tiên ở Việt Nam sử dụng kỹ thuật PCR-DGGE để phân tích các cộng đồng tuyến trùng đất trồng hồ tiêu.


2007 ◽  
Vol 13 ◽  
pp. 107-110
Author(s):  
M. Omacini ◽  
E.J. Chaneton ◽  
C.M. Ghersa

There is a growing recognition that endophyte effects on host plant traits may be propagated through food chains. We studied Neotyphodium occultans effects on soil nematode communities mediated by current and past patch occupancy by endophyteinfected Lolium multiflorum populations. A microcosm experiment was performed to evaluate whether abundance and diversity of nematodes at different trophic levels were affected by endophyte infection through rhizosphere-mediated or littermediated effects. We found that presence of endophyte-infected plants and their aerial litter both triggered a bottom-up trophic cascade enhancing the abundance of herbivorous and predaceous nematode taxa. Endophyte infection also increased overall nematode richness, mostly through changes induced at the highest trophic level in this soil food web. Our results suggest that fungal endophytes can modify the linkages between aboveand belowground community compartments, with potential consequences on plant patch dynamics. Keywords: soil food webs, Lolium multiflorum, Neotyphodium occultans, plant-soil feedback, after-life effects, indirect interactions, trophic cascades


Sign in / Sign up

Export Citation Format

Share Document