scholarly journals Moss-dominated biological soil crusts improve stability of soil organic carbon on the Loess Plateau, China  

2019 ◽  
Vol 65 (No. 2) ◽  
pp. 104-109 ◽  
Author(s):  
Xueqin Yang ◽  
Mingxiang Xu ◽  
Yunge Zhao ◽  
Liqian Gao ◽  
Shanshan Wang

The succession of biological soil crust (biocrust) may alter soil organic carbon (SOC) stability by affecting SOC fractions in arid and semi-arid regions. In the study, the SOC fractions were measured including soil easily oxidizable carbon (SEOC), soil microbial biomass carbon (SMBC), soil water soluble carbon (SWSC), and soil mineralizable carbon (SMC) at the Loess Plateau of China by using four biocrusts. The results show that SOC fractions in the biocrust layer were consistently higher than that in the subsoil layers. The average SOC content of moss crust was approximately 1.3–2.0 fold that of three other biocrusts. Moss crusts contain the lowest ratio of SEOC to SOC compared with other biocrusts. The ratio of SMC to SOC was the highest in light cyanobacteria biocrust and the lowest in moss crust, but no difference was observed in SMBC to SOC and SWSC to SOC in biocrust layers among four studied biocrusts. The results show that the moss crusts increase the accumulation of organic carbon into soil and reduce the ratio of SEOC to SOC and SMC to SOC. Together, these findings indicate that moss crusts increase the SOC stability and have important implications that SOC fractions and mineralization amount are good indicators for assessing the SOC stability.  

2013 ◽  
Vol 10 (7) ◽  
pp. 11181-11211 ◽  
Author(s):  
N. Lu ◽  
J. Liski ◽  
R. Y. Chang ◽  
A. Akujärvi ◽  
X. Wu ◽  
...  

Abstract. Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics is critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980–2010. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr), although it decreased in the first few years at the wetter sites. The accumulation rates of SOC were 1.58 to 6.22% yr–1 in the upper 20 cm and 1.62 to 5.15% yr–1 in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88–96, 48–86 and 57–74% of the variations in annual SOC changes at the soil depths of 0–20, 0–40, and 0–100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were small at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer time scale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites, which is favorable for further restoration of the vegetation and environment. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and successional stage of recovery.


2015 ◽  
Vol 35 (9) ◽  
Author(s):  
薛志婧 XUE Zhijing ◽  
马露莎 MA Lusha ◽  
安韶山 AN Shaoshan ◽  
王万忠 WANG Wanzhong

Sign in / Sign up

Export Citation Format

Share Document