scholarly journals Energy Efficiency of Continuous Rye, Rotational Rye and Barley in Different Fertilization Systems in a Long-Term Field Experiment

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

A goal in sustainable agriculture is to use fossil energy more efficiently in crop production. This 60-year-old experiment on a silt loam chernozem investigated effects of fertilization (unfertilized control, mineral fertilizer (NPK) and farmyard manure (FYM)) and rotation (continuous winter rye (CR), winter rye in rotation (RR), spring barley in rotation (SB) on diesel fuel consumption, total energy input (made of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity, energy productivity and energy use efficiency. The input rates of fertilizer, herbicides and seeds were set constant during the experiment. Soil tillage was done with a moldboard plough with subsequent combined seedbed preparation and seeding. The mean calculated total energy input was highest in NPK with 11.28 GJ ha−1 and lowest in the unfertilized control with 5.00 GJ ha−1. Total energy input for FYM was intermediate with 6.30 GJ ha−1. With energetic consideration of NPK nutrients in FYM the total energy input increased to the level of NPK. The share of the fertilizer energy on the total energy input was 49% for NPK. Fertilization with FYM and NPK increased yield and energy output considerably, especially of CR and SB which attained about doubled values. Crop rotation also increased the yield and energy output, especially of unfertilized rye, which attained values increased by about 75%. Fertilization with FYM resulted in the highest energy efficiency as the net-energy output, the energy productivity and the energy use efficiency were higher but the energy intensity was lower compared to unfertilized controls and NPK. When the nutrients in FYM were also energetically considered, the energy efficiency parameters of FYM decreased to the level of the NPK treatment. Crop rotation increased the energy efficiency of winter rye compared to the monoculture.

2021 ◽  
Vol 67 (No. 3) ◽  
pp. 137-146
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable cropping systems require efficient usage of fossil energy. This study performed on a long-term field experiment in the Pannonian Basis investigated the energy efficiency of four tillage systems (mouldboard plough (MP), deep conservation tillage (CT<sub>d</sub>), shallow conservation tillage (CT<sub>s</sub>) and no-tillage (NT)) for sugar beet and soybean production, taking fuel consumption, total energy input (made up of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity and energy use efficiency into account. The input rates of fertiliser, chemical plant protection, and seeds were set constant across years; whereas measured values of fuel consumption were used for all tillage treatments. NT required a considerably lower energy input than MP and CT<sub>d</sub> as no fuel is needed for tillage and just slightly more fuel for additional spraying of glyphosate. Anyhow, the energy efficiency parameters did not differ between tillage treatments, as theses parameters were mainly determined by energy output, which was considerably higher than the energy input. However, year effects on the energy efficiency were observed for both crops. Nitrogen fertilisation and diesel fuel consumption were identified as the most energy-intensive inputs. Consequently, the energy input for sugar beet was higher than that for soybean, which was identified as a low-input crop. But sugar beet attained a more than 4 times higher net-energy output, a 2.5 times higher energy use efficiency, and an energy intensity for yield production of less than 3 times those of soybean.  


Author(s):  
Osman Gokdogan ◽  
Seyithan Seydosoglu ◽  
Kagan Kokten ◽  
Aydin Sukru Bengu ◽  
Mehmet Firat Baran

The aim of this research is to compose an energy input-output of guar and lupin production during the production season of 2015 in Bingol province of Turkey. The energy input in guar and lupin production have been computed as 14 619.97 MJ ha-1 and 23 486.73 MJ ha-1, respectively. The energy output in guar and lupin production have been calculated as 43 767.21 MJ ha-1 and 16 554.41 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy in guar production have been calculated as 2.99, 6.42 MJ kg-1, 0.16 kg MJ-1 and 29 147.24 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy in lupin production have been calculated as 0.70, 31.95 MJ kg-1, 0.04 kg MJ-1 and -6932.32 MJ ha-1, respectively. The total energy input used up in guar production could be classified as 51.31 % direct, 48.69 % indirect, 22.24 % renewable and 77.76 % non-renewable. The total energy input used up in lupin production could be classified as 31.35 % direct, 68.65 % indirect, 33.68 % renewable and 66.32 % non-renewable.


2021 ◽  
Vol 67 (No. 5) ◽  
pp. 45-52
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25–30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8–10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0–17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.  


Author(s):  
Nawal Khamis Al-Mezeini ◽  
Abdulrahim M. Al-Ismaili ◽  
Said M. Tabook

Sustainable agricultural production could be assessed through energy-use efficiency (EUE). Thus, this paper aims to evaluate the EUE for cucumber greenhouse production in Oman. Data were obtained by interviewing farmers (face-to-face). Result indicated that total energy inputs (e.g. electricity, water, fertilizers and agrochemicals) and total energy output (cucumber yield) were 1159726.0 MJ ha-1 and 89942.9 MJ ha-1, respectively. The highest energy consuming input in the greenhouse production was electricity, consuming 88% of total energy input. This indicates that electricity had again the highest impact in cucumber greenhouse production and 99% of electricity goes for cooling the greenhouse. When all energy inputs were classified into its forms; direct (D) and indirect (ID), and renewable (R) and non-renewable (NR), the highest portion of total energy forms in greenhouse cucumber production was for D and NR energy. The EUE and energy productivity (EP) were found to be 0.07 and 0.10 kg MJ-1, respectively. Energy use in greenhouse cucumber production was inefficient and solar energy need to be implemented to improve cucumber greenhouse sustainability production.


2021 ◽  
Vol 67 (No. 12) ◽  
pp. 739-746
Author(s):  
Gerhard Moitzi ◽  
Reinhard Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

The effect of crop sequences (CR – continuous winter rye; CropR – three-field crop rotation of winter rye-spring barley-bare fallow) and fertilisation systems (unfertilised control, mineral fertiliser (NPK), farmyard manure (FYM)) on crop yield, energy efficiency indicators and land demand were analysed in a long-term experiment under Pannonian climate conditions. Due to lower fuel consumption in the bare fallow, the total fuel consumption for CropR was 27% lower than in CR. It was for NPK and FYM fertilisation by 29% and 42% higher than in the control. Although the energy output was lower in CropR than CR, the energy use efficiency for grain production increased by 35% and for above-ground biomass production by 20%. Overall crop sequences, the NPK treatment had higher crop yields, energy outputs and net-energy output with a lower energy use efficiency than the unfertilised control. CropR increased the land demand just by 20% in comparison to CR, although one-third of the land was not used for crop production. The land demand could be decreased with fertilisation by 50% (NPK) or 48% (FYM). A bare fallow year in the crop rotation decreased the crop yield, energy input and increased the energy use efficiency and land demand.  


2014 ◽  
Vol 1073-1076 ◽  
pp. 2468-2472
Author(s):  
Dong Tian ◽  
Jing Wang ◽  
Jian Ying Feng

This study examines energy consumption of inputs and output used in protected grape production, and aims at to find relationship between energy inputs and yield in the major protected grape producing regions in China. For this purpose, the data were collected from 516 questionnaires which included 304 effective ones by questionnaire survey method. The results indicated that total energy inputs were 57697.84 MJha-1where the Chemical with (32.4%) and Fertilizer with about (21.1%) were the major energy consumers. About 53.4% of the total energy inputs used in protected grape production was indirect while 46.6% was direct. The non-renewable shared about 78% whereas the renewable energy did 22%. Average yield and energy consumption are calculated as 25367.22Kgha-1and 299333.2MJha-1. Energy use efficiency, energy productivity, specific energy and net energy were 5.18, 0.44 kgMJ-1, 2.27 MJkg-1and241635.36 MJha-1, respectively.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1835
Author(s):  
Robert Oliver Simon ◽  
Kurt-Jürgen Hülsbergen

The main objective of the cultivation of energy crops is the production of renewable energy, the substitution of fossil energy resources, and a substantial contribution to energy supply. Thus, energy yield and energy efficiency are the most important criteria for the assessment of energy crops and biomass-based renewable energy chains. Maize is the energy crop with the highest cultivation acreage in Germany because of its high energy yields, but is the subject of controversial debate because of possible detrimental effects on agro-ecosystems. This raises the question as to which energy crops and production systems could be used instead of maize, in order to increase crop diversity and lower environmental impacts. We examined yields, energy inputs, energy outputs, and energy efficiency of alternative energy crops (combinations of catch crops and main crops) compared to maize in four-year field experiments at three southern German sites by means of process analyses. Maize showed moderate energy inputs (11.3–13.2 GJ ha−1), with catch crops ranging from 6.2 to 10.7 GJ ha−1 and main crops ranging from 7.6 to 24.8 GJ ha−1. At all three sites, maize had the highest net energy output compared to the other crops (x¯ = 354–493 GJ ha−1), but was surpassed by combinations of catch and main crops at some sites (winter rye/maize: x¯ = 389–538 GJ ha−1). Although some combinations yielded higher net energy outputs than maize, no other crop or combination of crops outperformed maize regarding energy use efficiency (energy output/energy input: x¯ = 32–45).


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 88-96 ◽  
Author(s):  
R. Fadavi ◽  
A. Keyhani ◽  
S.S. Mohtasebi

This study examines the energy balance between the input and the output per hectare for an apple orchard in the West Azarbaijan province in Iran (2008&ndash;2009). Data were collected by using random sampling method for 80 &ldquo;face to face&rdquo; questioners. Results showed that the highest share of energy consumption belongs to packaging (57%) and irrigation (16%). The highest share of expenses was found to be 34% and 30% for labor and packaging, respectively. The total energy input for apple production, energy productivity, net energy and output-input energy value were estimated as 101,505 MJ/ha, 0.23 kg/MJ, &ndash;56,320 MJ/ha and 0.44, respectively. Results indicated that 71% and 96.7% of total energy input were in indirect and non-renewable form, respectively. The benefit-cost ratio was estimated as 1.77. The regression results revealed that all exogenous variables (for machinery, fertilizers, farmyard manure and packaging energies) were found statistically significant. The packaging had the highest impact (3.23). According to the benefit-cost ratio, large farms were more successful in economic performance.


Author(s):  
Başak Aydın ◽  
Duygu Aktürk ◽  
Erol Özkan ◽  
Harun Hurma ◽  
Mehmet Ali Kiracı

This study includes the agricultural enterprises producing pear which apply and do not apply good agricultural practices in Thrace Region. The basic purpose of this study is the determination of input use amounts and energy use efficiency and economical comparison of the enterprises applying and not applying good agricultural practices. In Kırklareli, Edirne and Tekirdağ, 16 pear producers which carry through good agricultural practices participated in the survey. According to the results, total energy input, energy output, energy output/input ratio, energy productivity, specific energy, energy density and net energy were determined to be respectively as 30.046.64 MJ, 36.000 MJ, 1.20, 0.50 kg/MJ, 2.00 MJ/kg, 1.80 MJ/TL and 5.953.36 MJ in the enterprises applying good agricultural practices. Total energy input, energy output, energy output/input ratio, energy productivity, specific energy, energy density and net energy were determined to be respectively as 32.111.92 MJ, 33.600 MJ, 1.05, 0.44 kg/MJ, 2.29 MJ/kg, 2.05 MJ/TL and 1.488.08 MJ in the enterprises not applying good agricultural practices. In Thrace Region the cost of producing; one kg of pear was calculated 1.11 TL in the enterprises which applied good agriculture while it was calculated 1.12 TL at the enterprises which did not apply the good agriculture. Total expenses, gross output value, gross profit, net profit and relative profit were determined to be respectively as 16.682.80 TL, 24.250 TL, 14.938.10 TL, 7.567.20 TL and 1.45 in the enterprises applying good agricultural practices. Total expenses, gross output value, gross profit, net profit and relative profit were determined to be respectively as 15.652 TL, 21.000 TL, 11.511.80 TL, 5.348 TL and 1.34 in the enterprises not applying good agricultural practices. According to energy use efficiency and economic analysis results, pear farming was determined to be more advantageous in the enterprises applying good agricultural practices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changjiang Li ◽  
Shuo Li

AbstractThe well-irrigated planting strategy (WI) consumes a large amount of energy and exacerbates greenhouse gas emissions, endangering the sustainable agricultural production. This 2-year work aims to estimate the economic benefit, energy budget and carbon footprint of a wheat–maize double cropping system under conventional rain-fed flat planting (irrigation once a year, control), ridge–furrows with plastic film mulching on the ridge (irrigation once a year, RP), and the WI in dry semi-humid areas of China. Significantly higher wheat and maize yields and net returns were achieved under RP than those under the control, while a visible reduction was found for wheat yields when compared with the WI. The ratio of benefit: cost under RP was also higher by 10.5% than that under the control in the first rotation cycle, but did not differ with those under WI. The net energy output and carbon output followed the same trends with net returns, but the RP had the largest energy use efficiency, energy productivity carbon efficiency and carbon sustainability among treatments. Therefore, the RP was an effective substitution for well–irrigated planting strategy for achieving sustained agricultural development in dry semi-humid areas.


Sign in / Sign up

Export Citation Format

Share Document