Energy input-output analysis of guar (Cyamopsis tetragonoloba) and lupin (Lupinus albus L.) production in Turkey

Author(s):  
Osman Gokdogan ◽  
Seyithan Seydosoglu ◽  
Kagan Kokten ◽  
Aydin Sukru Bengu ◽  
Mehmet Firat Baran

The aim of this research is to compose an energy input-output of guar and lupin production during the production season of 2015 in Bingol province of Turkey. The energy input in guar and lupin production have been computed as 14 619.97 MJ ha-1 and 23 486.73 MJ ha-1, respectively. The energy output in guar and lupin production have been calculated as 43 767.21 MJ ha-1 and 16 554.41 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy in guar production have been calculated as 2.99, 6.42 MJ kg-1, 0.16 kg MJ-1 and 29 147.24 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy in lupin production have been calculated as 0.70, 31.95 MJ kg-1, 0.04 kg MJ-1 and -6932.32 MJ ha-1, respectively. The total energy input used up in guar production could be classified as 51.31 % direct, 48.69 % indirect, 22.24 % renewable and 77.76 % non-renewable. The total energy input used up in lupin production could be classified as 31.35 % direct, 68.65 % indirect, 33.68 % renewable and 66.32 % non-renewable.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

A goal in sustainable agriculture is to use fossil energy more efficiently in crop production. This 60-year-old experiment on a silt loam chernozem investigated effects of fertilization (unfertilized control, mineral fertilizer (NPK) and farmyard manure (FYM)) and rotation (continuous winter rye (CR), winter rye in rotation (RR), spring barley in rotation (SB) on diesel fuel consumption, total energy input (made of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity, energy productivity and energy use efficiency. The input rates of fertilizer, herbicides and seeds were set constant during the experiment. Soil tillage was done with a moldboard plough with subsequent combined seedbed preparation and seeding. The mean calculated total energy input was highest in NPK with 11.28 GJ ha−1 and lowest in the unfertilized control with 5.00 GJ ha−1. Total energy input for FYM was intermediate with 6.30 GJ ha−1. With energetic consideration of NPK nutrients in FYM the total energy input increased to the level of NPK. The share of the fertilizer energy on the total energy input was 49% for NPK. Fertilization with FYM and NPK increased yield and energy output considerably, especially of CR and SB which attained about doubled values. Crop rotation also increased the yield and energy output, especially of unfertilized rye, which attained values increased by about 75%. Fertilization with FYM resulted in the highest energy efficiency as the net-energy output, the energy productivity and the energy use efficiency were higher but the energy intensity was lower compared to unfertilized controls and NPK. When the nutrients in FYM were also energetically considered, the energy efficiency parameters of FYM decreased to the level of the NPK treatment. Crop rotation increased the energy efficiency of winter rye compared to the monoculture.


Author(s):  
Kagan Kokten ◽  
Erdal Cacan ◽  
Osman Gokdogan ◽  
Mehmet Firat Baran

The aim of this study is to determine an energy balance of common vetch, hungarian vetch and narbonne vetch production during the production season of 2015 in Bingol province of Turkey. The energy input in common vetch, hungarian vetch and narbonne vetch production have been calculated as 13060.72 MJ ha-1, 15767.22 MJ ha-1and 14769.73 MJ ha-1, respectively. The energy output in common vetch, hungarian vetch and narbonne vetch production have been calculated as 42048.22 MJ ha-1, 10051.33 MJ ha-1 and 11963.62 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy values related to common vetch, Hungarian vetch and Narbonne vetch production have been determined as 3.22, 0.64, 0.81; 5.46 MJ kg-1, 29.98 MJ kg-1, 21.98 MJ kg-1; 0.18 kg MJ-1, 0.03 kg MJ-1, 0.05 kg MJ-1 and 28987.50 MJ ha-1, -5715.89 MJ ha-1, -2806.11 MJ ha-1 respectively for each type. The total renewable energy input applied in common vetch, hungarian and narbonne vetch was 26.85, 20.42 and 29.69 per cent, respectively.


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 88-96 ◽  
Author(s):  
R. Fadavi ◽  
A. Keyhani ◽  
S.S. Mohtasebi

This study examines the energy balance between the input and the output per hectare for an apple orchard in the West Azarbaijan province in Iran (2008–2009). Data were collected by using random sampling method for 80 “face to face” questioners. Results showed that the highest share of energy consumption belongs to packaging (57%) and irrigation (16%). The highest share of expenses was found to be 34% and 30% for labor and packaging, respectively. The total energy input for apple production, energy productivity, net energy and output-input energy value were estimated as 101,505 MJ/ha, 0.23 kg/MJ, –56,320 MJ/ha and 0.44, respectively. Results indicated that 71% and 96.7% of total energy input were in indirect and non-renewable form, respectively. The benefit-cost ratio was estimated as 1.77. The regression results revealed that all exogenous variables (for machinery, fertilizers, farmyard manure and packaging energies) were found statistically significant. The packaging had the highest impact (3.23). According to the benefit-cost ratio, large farms were more successful in economic performance.


2021 ◽  
Vol 67 (No. 5) ◽  
pp. 45-52
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25–30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8–10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0–17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changjiang Li ◽  
Shuo Li

AbstractThe well-irrigated planting strategy (WI) consumes a large amount of energy and exacerbates greenhouse gas emissions, endangering the sustainable agricultural production. This 2-year work aims to estimate the economic benefit, energy budget and carbon footprint of a wheat–maize double cropping system under conventional rain-fed flat planting (irrigation once a year, control), ridge–furrows with plastic film mulching on the ridge (irrigation once a year, RP), and the WI in dry semi-humid areas of China. Significantly higher wheat and maize yields and net returns were achieved under RP than those under the control, while a visible reduction was found for wheat yields when compared with the WI. The ratio of benefit: cost under RP was also higher by 10.5% than that under the control in the first rotation cycle, but did not differ with those under WI. The net energy output and carbon output followed the same trends with net returns, but the RP had the largest energy use efficiency, energy productivity carbon efficiency and carbon sustainability among treatments. Therefore, the RP was an effective substitution for well–irrigated planting strategy for achieving sustained agricultural development in dry semi-humid areas.


Author(s):  
Moslem Sami ◽  
Habib Reyhani

This study evaluated the impacts of cotton farming on the climate changes in terms of energy and greenhouse gas (GHG) emission indices. Energy consumption pattern and sensitivity of energy inputs were evaluated and share of each input in GHG emissions was determined in the form of direct and indirect emissions for cotton farms in Golestan province of Iran. The total energy input and energy output were calculated to be 34,424.19 and 41,496.67 MJ/ha respectively. The share of fertilizers by 45.0 % of total energy inputs was the highest. This was followed by energies of fuel (18.4 %) and irrigation (17.9 %) respectively. Fertilizers and fuels were also the biggest producers of GHGs in the farms with shares of 61.95 and 24.32 % of total GHGs emission. Energy ratio, energy balance, energy intensity and energy productivity were found as 1.21, 7,072.48 MJ/ha, 9.79 MJ/kg and 0.10 kg/MJ, respectively. Results of sensitivity analysis indicated that the cotton production was more sensitive to energies of seed and human labour than other inputs and an additional use of 1 MJ of each of these inputs would lead to a change in the yield by −0.75 and 0.73 kg/ha, respectively. The results also showed, in the process of cotton farming 897.80 and 1177.67 kg CO2 – equivalent of direct and indirect GHG were emitted per hectare respectively.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Rajeev Kumar ◽  
Rahul Sharma ◽  
Dharmendra Kumar ◽  
Ajay R. Singh ◽  
Desh B. Singh ◽  
...  

Abstract In this communication, characteristic equation for single-slope solar still augmented with N alike parabolic concentrator integrated evacuated tubular collectors has been developed which is also valid for N alike evacuated tubular collectors integrated single-slope solar distiller unit as well as passive single-slope solar distiller unit. The developed equation is similar in the form to Hottel-Whillier-Bliss equation which was developed for flat plate collector. The analytical equation development for the proposed system involves the writing of equations for its different components on the ground of equating net energy input to net energy output. The results obtained for the proposed system have been compared with the results of N alike evacuated tubular collectors integrated single-slope solar distiller unit and passive single-slope solar distiller unit. It has been concluded that the mean value of instantaneous efficiency for N alike parabolic concentrator integrated evacuated tubular collectors is higher by 42.86% and 50.82%; daily generation of freshwater is higher by 49.73% and 74.34%; and daily exergy is higher by 78.71% and 93.35% than the corresponding values for N alike evacuated tubular collector integrated single-slope solar distiller unit and passive single-slope solar distiller unit for the same basin area in that order.


1981 ◽  
Vol 29 (1) ◽  
pp. 3-14
Author(s):  
L. Boersma ◽  
E. Gasper ◽  
J.E. Oldfield ◽  
P.R. Cheeke

The recovery of nutrients from pig manure (300 l/day discharged by 100 pigs) during digestion for biogas production amounted to 1435 kg N, 350 kg P and 490 kg K per year. When spread on the 15.26 ha of land required to grow the corn and soybean for the pig ration, each hectare would receive 94 kg N, 23 kg P and 32 kg K per year. The energy value of the recovered fertilizer represents 4.4% of the total energy input of the pig production system. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
Vol 67 (No. 3) ◽  
pp. 137-146
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable cropping systems require efficient usage of fossil energy. This study performed on a long-term field experiment in the Pannonian Basis investigated the energy efficiency of four tillage systems (mouldboard plough (MP), deep conservation tillage (CT<sub>d</sub>), shallow conservation tillage (CT<sub>s</sub>) and no-tillage (NT)) for sugar beet and soybean production, taking fuel consumption, total energy input (made up of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity and energy use efficiency into account. The input rates of fertiliser, chemical plant protection, and seeds were set constant across years; whereas measured values of fuel consumption were used for all tillage treatments. NT required a considerably lower energy input than MP and CT<sub>d</sub> as no fuel is needed for tillage and just slightly more fuel for additional spraying of glyphosate. Anyhow, the energy efficiency parameters did not differ between tillage treatments, as theses parameters were mainly determined by energy output, which was considerably higher than the energy input. However, year effects on the energy efficiency were observed for both crops. Nitrogen fertilisation and diesel fuel consumption were identified as the most energy-intensive inputs. Consequently, the energy input for sugar beet was higher than that for soybean, which was identified as a low-input crop. But sugar beet attained a more than 4 times higher net-energy output, a 2.5 times higher energy use efficiency, and an energy intensity for yield production of less than 3 times those of soybean.  


Sign in / Sign up

Export Citation Format

Share Document