scholarly journals   Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China

2012 ◽  
Vol 58 (No. 7) ◽  
pp. 302-308 ◽  
Author(s):  
P. Wang ◽  
J.J. Zhang ◽  
B. Shu ◽  
R.X. Xia

Communities of arbuscular mycorrhizal fungi (AMF) were studied in sod culture (SC), straw mulching (NM), and herbicide treated and no-tillage (NH) citrus orchards, respectively. The highest total colonization rate (39.47%) and hyphal length density (1.15 m/g soil) were found in SC, the highest spore numbers (1024 spores/100 g soil) in NM, while the lowest ones (31.50%, 0.94 m/g soil and 719 spores/100 g soil) in NH and they varied significantly among three different types of orchards. Total 18 AMF species belonging to five families, Acaulosporaceae (four species), Claroideoglomeraceae (two species), Gigasporaceae (one species), Glomeraceae (nine species) and Pacisporaceae (two species) were identified, and Glomus aggregatum and Claroideoglomus etunicatum were the dominant species in all surveyed plots. The redundancy analysis showed that AMF community structure was influenced greatly by pH, soil management, soil organic matter (C<sub>ox</sub>) and available phosphorus (P<sub>Olsen</sub>). In SC orchards, species richness and Shannon-Wiener index of AMF were notably higher than in other treated orchards. So, it is reasonable to select SC as the best practice in citrus orchard in order to enhance AMF benefits. &nbsp;

Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


2008 ◽  
Vol 304 (1-2) ◽  
pp. 257-266 ◽  
Author(s):  
Yan Chen ◽  
Jian-gang Yuan ◽  
Zhong-yi Yang ◽  
Guo-rong Xin ◽  
Ling Fan

2018 ◽  
Vol 3 (2) ◽  
pp. 120-134 ◽  
Author(s):  
Methuselah Mang’erere Nyamwange ◽  
◽  
Ezekiel Mugendi Njeru ◽  
Monicah Mucheru-Muna ◽  
Felix Ngetich ◽  
...  

ZOOTEC ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 167
Author(s):  
Rifa E. Ansiga ◽  
A. Rumambi ◽  
D. A. Kaligis ◽  
I. Mansur ◽  
W. Kaunang

EXPLORATION OF ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN FORAGE RHIZOSPHERES. This study aimed to determine the diversity of Arbuscular Mycorrhizal Fungi (AMF) in several kinds of hybrid forages Rhizospheres, either in grasses or legumes. Soil samples were taken from three different locations, consisted of: Mapanget (forages type: Leucaena leucocepala, Sorghum varieties numbu, Penicettum purpureum cv. Mott), Tateli (forages type: calothyrsus Calliandra, Gliricidia sepium) and Campus of UNSRAT, Manado (forage type: King grass). The soil samples which taken from forages rhizospheres were sieved using Brundrett method and then centrifuged.  Thereafter, isolation and identification of spore were carried out based on spore morphology character, involves: shape, size, color, hyphae attachment, and ornament. Extraction and identification of spores on six types of rhizosphere were found 34 different types of AMF spores in shape and color. In grass, it was found three types of spores, i.e.: Glomus, Acaulospora, and Sclerocystis, meanwhile in leguminous just one type of spore was found, i.e.: Glomus. The difference of rhizosphere in grass and leguminosae resulted in different types of spores, where Sclerocystis and Acaulospora are found in grasses, on the contrary Sclerocystis and Acaulospora are not found in leguminosae. Based on the number of spores of AMF, it seemed that Glomus types found to have the most number, while Sclerocystis and Acaulospora had the lowest number of spores found. Key words: Exploration, Arbuscular Mycorrhizal Fungi (AMF), Grass, Legume, Spores


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 559 ◽  
Author(s):  
Elsie Sarkodee-Addo ◽  
Michiko Yasuda ◽  
Chol Gyu Lee ◽  
Makoto Kanasugi ◽  
Yoshiharu Fujii ◽  
...  

Understanding the community composition and diversity of arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem is important for exploiting their potential in sustainable crop production. In this study, we described the genetic diversity and community structure of indigenous AMF in rain-fed rice cultivars across six different regions in Ghana. The morphological and molecular analyses revealed a total of 15 different AMF genera isolated from rice roots. Rhizophagus and Glomus were observed to be predominant in all regions except the Ashanti region, which was dominated by the genera Scutellospora and Acaulospora. A comparison of AMF diversity among the agroecological zones revealed that Guinea Savannah had the highest diversity. Permutational Multivariate Analysis of Variance (PERMANOVA) analysis indicated that the available phosphorus (AP) in the soil was the principal determining factor for shaping the AMF community structure (p < 0.05). We report, for the first time, AMF diversity and community structure in rice roots and how communities are affected by the chemical properties of soil from different locations in Ghana.


2016 ◽  
Vol 67 (10) ◽  
pp. 1116 ◽  
Author(s):  
Guangzhou Wang ◽  
Xia Li ◽  
Peter Christie ◽  
Junling Zhang ◽  
Xiaolin Li

Foraging strategies in arbuscular mycorrhizal fungi (AMF) for heterogeneously distributed resources in the soil remain to be explored. We used nylon-mesh bags of 30 μm to simulate patches of different phosphorus (P) supply levels (Expt 1) and P forms (organic v. inorganic, Expts 1 and 2). In Expt 1, host maize (Zea mays) was unfertilised; in each pot, five P-enriched bags were supplied with either Na-phytate or KH2PO4 at P rates of 0 (P0), 50 (P50), 100 (P100), 150 (P150) and 200 (P200) mg P kg–1. In Expt 2, maize plants were supplied with 20 (P20) or 50 (P50) mg P kg–1, and five P-enriched bags were supplied with different P forms (Na-phytate, lecithin, RNA, KH2PO4) and a nil-P control. Three fungal species (Funneliformis mosseae, Rhizophagus irregularis, and Glomus etunicatum) were compared in Expt 1, and the first two species in Expt 2. In Expt 1, the hyphal-length density (HLD) of G. etunicatum was not significantly different among different P levels when supplied with KH2PO4, whereas the HLD of R. irregularis tended to increase at higher P supply (above P50) in the Na-phytate treatment. The HLD of F. mosseae increased at P150 when supplied with KH2PO4, and increased at P100 and P150 in the Na-phytate treatment relative to P0. APase activity levels were more related to P supply level, in particular with F. mosseae inoculation and uninoculated control, showing that P200 significantly reduced APase relative to P0. In Expt 2, greater hyphal growth of both fungal species tended to occur with KH2PO4. At P20, the HLD of R. irregularis in treatments with KH2PO4 and lecithin, and of F. mosseae with KH2PO4, were higher than in P0. At P50, the HLD of F. mosseae was higher than of R. irregularis; but P form had no significant influence on HLD of F. mosseae, whereas the HLD of R. irregularis in the P-amended treatment (except with Na-phytate) was higher than in P0. APase activity did not differ significantly between the two fungal species. Highest APase activity generally occurred with lecithin, with no significant difference among the other P forms. Our results indicate that the response of AMF to P-enriched patches is complex, and both the form and amount of P supplied should be considered. Variations between AMF in the proliferation of hyphae to heterogeneous nutrient patches might be a mechanism by which these species can maintain diversity in intensive agricultural ecosystems.


2020 ◽  
Vol 5 (1) ◽  
pp. 539-547
Author(s):  
Elizabeth Temitope Alori ◽  
Oluyemisi Bolajoko Fawole ◽  
Medinat Olaitan Akanji

AbstractA potted experiment arranged in a 5 × 3 factorial in a randomized complete block design was undertaken to investigate the occurrence of arbuscular mycorrhizal fungi (AMF) in the soil of five leguminous plants: Cajanus cajan (L.) Huth, Centrosema pascuorum Martius ex Benth, Crotalaria ochroleuca G. Don, Lablab purpureus (L.) Sweet and Mucuna pruriens (L.) DC. The effects of varying phosphorus concentrations (P0) (0 kg/ha of single superphosphate), P1 (100 kg/ha of single superphosphate) and P2 (200 kg/ha of single superphosphate) on the population of AMF spores under these legumes were also carried out. The AMF spores in soil samples were extracted at 19 weeks after planting, using the wet sieving and decanting method, and enumerated with the aid of a stereoscopic microscope. Spores of different species of genera Glomus and Gigaspora were encountered in the soils of the five leguminous plants. Spores of Glomus species predominated while the spores of Gigaspora species were found in lower numbers. The total AMF population was significantly affected by legume species (p ≤ 0.05). The total AMF spore counts were higher in the soils of Mucuna pruriens and Crotolaria ochroleuca (p ≤ 0.05). The populations of Glomus mossae in soils decreased with increasing level of applied phosphorus (p ≤ 0.05). A positive correlation was recorded between the total AMF spores, the predominant AMF spores and soil pH, while the organic matter content and the available phosphorus were negatively correlated with both the total AM spores and the predominant AMF spores.


Sign in / Sign up

Export Citation Format

Share Document