scholarly journals The Effect of Mycorrhizal Inoculum and Phosphorus Treatment on Growth and Flowering of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) Plant

Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.

2019 ◽  
Vol 32 (2) ◽  
pp. 345-353
Author(s):  
JOHNY DE JESUS MENDONÇA ◽  
LARISSA DE SOUZA GOIS ◽  
JACILENE FRANCISCA SOUZA SANTOS ◽  
TAMIRIS APARECIDA DE CARVALHO SANTOS ◽  
FRANCISCO SANDRO RODRIGUES HOLANDA ◽  
...  

ABSTRACT Paspalum millegrana grass is a member of the family Poaceae native to the Americas, whose interaction with native symbiotic fungi has not yet been reported. The objective of this study was to evaluate the interactions between the native microorganisms and arbuscular mycorrhizal fungi in the development of P. millegrana Schrad. The experimental design was completely randomized with seven treatments (control, without AMF; native microbial inoculant; native + UFLA05 Gigaspora albida; native + UFLA351 Rhizoglomus clarum; native + UFLA372 Claroideoglomus etunicatum; native + UFLA401 Acaulospora morrowiae, and a mix of all treatments). The substrate was autoclaved sand and coconut powder at 2:1, with eight repetitions. The variables analyzed were: mycorrhizal colonization, dark septate endophytic fungi colonization, number of mycorrhizal spores, dry shoot mass, dry root mass, root length and volume, number of tiller and mycorrhizal dependence. Mycorrhizal arbuscular fungi and dark septate endophytic fungi colonized P. millegrana. The sporulation of arbuscular mycorrhizal fungi associated with P. millegrana was influenced by mycorrhizal colonization, depending on the fungus-plant interaction. P. millegrana was responsive to native + UFLA05 and native + UFLA351. No correlation between tiller emergence and mycorrhizal colonization of P. millegrana was observed.


Author(s):  
M.-Miao Xie, Q.-Sheng Wu

Arbuscular mycorrhizal fungi (AMF) represent positive effects on growth performance, nutrient absorption and stressed tolerance of host plants, whereas it is not clear whether AMF can affect flowering traits of ornamental plants. In this work, Diversispora spurca, D. versiformis, and Funneliformis mosseae were applied to rhizosphere of potted hyacinth (Hyacinths orientalis L. Anna Marie) plants. After four months of mycorrhizal inoculation, root could be colonized by exogenous AMF species, varied from 38% to 49%, whilst F. mosseae had the best mycorrhizal status. Out of these AMF species used, only F. mosseae-inoculated plants recorded greater raceme length and biomass production of single flowerlet, raceme, and flower stem. F. mosseae also induced the flowering earlier in 2 days and prolonged flowering time for 3 days. D. versiformis postponed 2 days for flowering. Mycorrhizal plants recorded considerably higher acetic acid (IAA) and zeatin riboside (ZR) levels in flowers, irrespective of AMF species. F. mosseae-inoculated plants had significantly higher methyl jasmonate (MeJA) concentrations in flowers than other AMF- or non-AMF-treated plants. These results thereby conclude that F. mosseae can be used to regulate flowering of H. orientalis L. Anna Marie, including flowering earlier and prolonging flowering time, which is closely associated with IAA, ZR and MeJA levels in flowers.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 559 ◽  
Author(s):  
Elsie Sarkodee-Addo ◽  
Michiko Yasuda ◽  
Chol Gyu Lee ◽  
Makoto Kanasugi ◽  
Yoshiharu Fujii ◽  
...  

Understanding the community composition and diversity of arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem is important for exploiting their potential in sustainable crop production. In this study, we described the genetic diversity and community structure of indigenous AMF in rain-fed rice cultivars across six different regions in Ghana. The morphological and molecular analyses revealed a total of 15 different AMF genera isolated from rice roots. Rhizophagus and Glomus were observed to be predominant in all regions except the Ashanti region, which was dominated by the genera Scutellospora and Acaulospora. A comparison of AMF diversity among the agroecological zones revealed that Guinea Savannah had the highest diversity. Permutational Multivariate Analysis of Variance (PERMANOVA) analysis indicated that the available phosphorus (AP) in the soil was the principal determining factor for shaping the AMF community structure (p < 0.05). We report, for the first time, AMF diversity and community structure in rice roots and how communities are affected by the chemical properties of soil from different locations in Ghana.


2019 ◽  
Vol 79 (1) ◽  
pp. 98-109
Author(s):  
Hui Liu ◽  
Man Wu ◽  
Jinming Liu ◽  
Yaobing Qu ◽  
Yubao Gao ◽  
...  

2018 ◽  
Vol 31 (3) ◽  
pp. 602-611 ◽  
Author(s):  
JESSICA SILVA SANTOS ◽  
JACILENE FRANCISCA SOUZA SANTOS ◽  
LÁZARA JOSSIKARLA DE OLIVEIRA LOPES ◽  
JOHNY DE JESUS MENDONÇA ◽  
FRANCISCO SANDRO RODRIGUES HOLANDA ◽  
...  

ABSTRACT Vetiver grass is a member of the grass family Poaceae. Its fast development is probably due to the interaction with native microbiota, whose influence has not been studied yet. The objective of this work was to evaluate the colonization and development of the vetiver grass (Chrysopogon zizanioides (L.) Roberty) inoculated with arbuscular mycorrhizal fungi and dark septate endophytic fungi. The experimental design was a completely randomized design with six treatments (control, without mycorrhizal fungi, native inoculants, UFLA05 - Gigaspora albida, UFLA351 - Rhizoglomus clarum, UFLA372 - Claroideoglomus etunicatum, and UFLA401 - Acaulospora morrowiae), with three replicates each. Vetiver grass tillers as well as the native microbial inoculum were obtained from the Lower São Francisco river experimental area, located in Sergipe state, Northeastern Brazil. There was a negative interaction between all tested UFLAs mycorrhizal isolates and the native microbiota (mycorrhizal and endophytic fungi) in the treatments, especially when taking into consideration plant height and volume of roots. The effects of inoculation with UFLA isolates may have been influenced by the presence of the native mycorrhizal fungi and the dark septate endophytic fungi. Vetiver grass was responsive to the native inoculant. The mycorrhizal colonization of the vetiver grass was vesicular, but the formation of the arbuscules can be influenced by the interaction between the fungus, plant, and the environment.


2012 ◽  
Vol 58 (No. 7) ◽  
pp. 302-308 ◽  
Author(s):  
P. Wang ◽  
J.J. Zhang ◽  
B. Shu ◽  
R.X. Xia

Communities of arbuscular mycorrhizal fungi (AMF) were studied in sod culture (SC), straw mulching (NM), and herbicide treated and no-tillage (NH) citrus orchards, respectively. The highest total colonization rate (39.47%) and hyphal length density (1.15 m/g soil) were found in SC, the highest spore numbers (1024 spores/100 g soil) in NM, while the lowest ones (31.50%, 0.94 m/g soil and 719 spores/100 g soil) in NH and they varied significantly among three different types of orchards. Total 18 AMF species belonging to five families, Acaulosporaceae (four species), Claroideoglomeraceae (two species), Gigasporaceae (one species), Glomeraceae (nine species) and Pacisporaceae (two species) were identified, and Glomus aggregatum and Claroideoglomus etunicatum were the dominant species in all surveyed plots. The redundancy analysis showed that AMF community structure was influenced greatly by pH, soil management, soil organic matter (C<sub>ox</sub>) and available phosphorus (P<sub>Olsen</sub>). In SC orchards, species richness and Shannon-Wiener index of AMF were notably higher than in other treated orchards. So, it is reasonable to select SC as the best practice in citrus orchard in order to enhance AMF benefits. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document