scholarly journals Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 559 ◽  
Author(s):  
Elsie Sarkodee-Addo ◽  
Michiko Yasuda ◽  
Chol Gyu Lee ◽  
Makoto Kanasugi ◽  
Yoshiharu Fujii ◽  
...  

Understanding the community composition and diversity of arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem is important for exploiting their potential in sustainable crop production. In this study, we described the genetic diversity and community structure of indigenous AMF in rain-fed rice cultivars across six different regions in Ghana. The morphological and molecular analyses revealed a total of 15 different AMF genera isolated from rice roots. Rhizophagus and Glomus were observed to be predominant in all regions except the Ashanti region, which was dominated by the genera Scutellospora and Acaulospora. A comparison of AMF diversity among the agroecological zones revealed that Guinea Savannah had the highest diversity. Permutational Multivariate Analysis of Variance (PERMANOVA) analysis indicated that the available phosphorus (AP) in the soil was the principal determining factor for shaping the AMF community structure (p < 0.05). We report, for the first time, AMF diversity and community structure in rice roots and how communities are affected by the chemical properties of soil from different locations in Ghana.

Author(s):  
B. K. W. Pathirana ◽  
P. N. Yapa

Aims: This study was aimed to compare aquatic weed, biochar and compost carrier substances for the development of effective pelleted biofertilizer for paddy (Oryza sativa L.) using co-inoculated bacteria, Azospirillum sp., Pseudomonas fluorescens and arbuscular mycorrhizal fungi (AMF). Place and Duration of Study: Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri Lanka between November 2018 and May 2019. Methodology: Pre-sterilized, 1 kg weight of ground carrier material was inoculated with 50 g of AMF propagules and 20 ml of 1.5 x 108 (CFU/ml) of each bacterial inoculant. Different types of pelleted biofertilizers were prepared as; aquatic weed and bioinoculum (P1), aquatic weed, bioinoculum and nutrient supplement mixture (P2), biochar and bioinoculum (P3), biochar, bioinoculum and nutrient supplement mixture (P4), compost and bioinoculum (P5), compost, bioinoculum and nutrient supplement mixture (P6). Rock phosphate and potassium feldspar was used as nutrient supplement mixture in developing some pelleted biofertilizers. Biofertilizer pellets were tested for the microbial survivability with the time by determining viable cell count of bacteria at two storage temperatures of 0°C and 30°C. Pot experiment was carried out to investigate the effects of prepared pelleted biofertilizers on growth and yield of rice and on some soil chemical and biological characteristics. Control (without biofertilizers) and above pelleted biofertilizers were added to the 3000 g of soil in pot with one paddy plant of variety BG 360. The treatments were arranged in a randomized complete block design (RCBD) with five replicates. Rice roots were screened for AMF colonization after harvesting. Results: According to Tukey’s Pairwise Comparison test, control and different treatments in pot experiment were significantly different for shoot height, number of seeds per panicle, 100 seeds weight and soil pH (p ≤ 0.05). However, there was no significant difference observed for bacterial count in prepared biofertilizers and biofertilizer applied soil, relative growth rate, plant dry and fresh weights and electrical conductivity. Among different pelleted biofertilizers, application of pellets consisted of compost with bioinoculant (P5), exceedingly enhanced the rice growth and yield. Compost, bioinoculum and nutrient supplement mixture (P6) added pellets were shown highest bacterial survivability at 30°C for seven days. Although AMF colonization of rice plants were low this was the first report of citing the presence of AMF in rice roots in Sri Lanka. Conclusion: These pelleted biofertilizers have the potential to be used for improved productivity of rice variety Bg 360. Therefore, developing such bioinoculants as biofertilizers and their efficient use could be considered as a sustainable solution for rice cultivation in Sri Lanka and worldwide.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102838 ◽  
Author(s):  
Saad El-Din Hassan ◽  
Terrence H. Bell ◽  
Franck O. P. Stefani ◽  
David Denis ◽  
Mohamed Hijri ◽  
...  

2020 ◽  
Vol 367 (2) ◽  
Author(s):  
Luca Giovannini ◽  
Cristiana Sbrana ◽  
Luciano Avio ◽  
Alessandra Turrini

ABSTRACT Arbuscular mycorrhizal fungi (AMF) are a key group of beneficial obligate biotrophs, establishing a mutualistic symbiosis with the roots of most land plants. The molecular markers generally used for their characterization are mainly based on informative regions of nuclear rDNA (SSU-ITS-LSU), although protein-encoding genes have also been proposed. Within functional genes, those encoding for phosphate transporters (PT) are particularly important in AMF, given their primary ability to take up Pi from soil, and to differentially affect plant phosphate nutrition. In this work, we investigated the genetic diversity of PT1 gene sequences and sequences of the taxonomically relevant SSU-ITS-LSU region in two isolates of the species Funneliformis coronatus, three isolates of the species Funneliformis mosseae and two species of the genus Rhizoglomus, originated from geographically distant areas and cultured in vivo. Our results showed that partial PT1 sequences not only successfully differentiated AMF genera and species like ribosomal gene sequences but also highlighted intraspecific diversity among F. mosseae and F. coronatus isolates. The study of functional genes related to the uptake of key mineral nutrients for the assessment of AMF diversity represents a key step in the selection of efficient isolates to be used as inocula in sustainable agriculture.


2020 ◽  
Vol 11 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Kanyamin Polispitak ◽  
Panarat Thongpoem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document