scholarly journals Effect of wood ash mulch on growth of Scots pine seedlings after transplanting into peat soil: A pilot study

2018 ◽  
Vol 64 (No. 1) ◽  
pp. 9-16
Author(s):  
Heiskanen Juha ◽  
Uotila Karri ◽  
Ruhanen Hanna

Wood ash production from power plants and the use of recycled ash for earthworks and forest peatland fertilization have increased markedly in Finland in recent decades. In this study, effects of wood-based ash on potted Scots pine seedlings were tested in a greenhouse. Seedlings were grown for one to two growing periods in peat with ash mulch thicknesses 0–8 cm. Seedlings grew well in ash thicknesses 0–4 cm during the first growing period. Seedling mortality (60%) occurred with the thickest ash mulch. Soluble nutrients in press water extracts were high compared with the control treatment. N and P levels were suboptimal also with ash mulch. During the second growing period, seedling mortality occurred (17%) already with the thinnest ash mulch. The results suggest that ash mulch around seedlings in quantities of less than 0.5 cm (or 7 kg·m<sup>–2</sup>) is feasible and is not detrimental to Scots pine seedlings. The results provide foundation for further field research on the longer-term impacts of wood ash mulch on planted seedlings on boreal forest sites and on the feasibility testing of the mulch as a supplement to or substitute for the soil preparation for seedling planting.

Silva Fennica ◽  
2020 ◽  
Vol 54 (2) ◽  
Author(s):  
Jyrki Hytönen ◽  
Hannu Hökkä

The effects of wood ash fertilisation on tree nutrition and growth on forested peatlands has been studied using loose ash, but in practice, ash fertilisation is done almost exclusively with granulated ash. In this study, the effects of granulated ash and loose ash (both 5 Mg ha) on the growth and nutrition of Scots pine ( L.) stands were compared between a nitrogen-poor and a nitrogen-rich site over 15 years. On the nitrogen-rich site, wood ash application was also compared with commercial PK fertilisation. On the nitrogen-rich site, mean stand volume growth increase over unfertilised control treatment during the 15 year study period using granulated ash and commercial PK fertiliser was of the same magnitude (on average, 2.2–2.3 m ha a). However, when loose ash was used growth increase over control was higher (3.7 m ha a). On the nitrogen-poor site, the mean growth increase gained by loose or granulated ash (1.4–1.5 m ha a) over the unfertilised control treatment was not significant. Fertilisation with loose ash or PK increased foliar P, K and B concentrations already in the first or second growing season, following fertilisation on both sites. Granulated ash increased foliar P concentrations on the nitrogen-rich site less than loose ash. After an initial increase, foliar P, K and B concentrations decreased at the end of study period. On the nitrogen-poor site, foliar P concentrations were below the deficiency limit by the end of the study period.–1Pinus sylvestris3–1–13–1–13–1–1


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 628
Author(s):  
Ilze Šņepste ◽  
Baiba Krivmane ◽  
Vilnis Šķipars ◽  
Astra Zaluma ◽  
Dainis E. Ruņģis

The induction of defense responses in Pinus sylvestris L. seedlings by methyl jasmonate (MeJA) was investigated in three experiments. Two different MeJA application methods were tested, and induction of defense responses was assayed by seedling inoculation with Heterobasidion annosum (Fr.) Bref. and Lophodermium seditiosum Minter, Staley and Millar. In the first experiment, five-year-old P. sylvestris ramets of one clone were directly treated with MeJA, followed by inoculation with H. annosum. In the second experiment, open-pollinated Scots pine seedlings were treated with MeJA by direct spraying and vaporization, and inoculation with H. annosum was done using a slightly modified protocol. In the third experiment, open-pollinated Scots pine seedlings were treated with MeJA by vaporization and inoculated with L. seditiosum. Direct application of MeJA induced seedling mortality, and in some cases, decreased resistance to inoculation with H. annosum. Application of MeJA by vaporization was less stressful for seedlings, and resulted in increased resistance to both H. annosum and L. seditiosum. In addition, an unforeseen Neodiprion sertifer (Geoffroy) and Hylobius abietis L. infestation provided anecdotal evidence of the efficacy of MeJA in inducing resistance to insect pests as well. Further studies are required on the induction of resistance to additional diseases and pests. Induced resistance could be used as a possible protective mechanism for Scots pine seedlings prior to planting during reforestation of stands to increase vitality and survival.


1995 ◽  
Vol 25 (11) ◽  
pp. 1806-1814 ◽  
Author(s):  
Virpi Palomäki

Effects of magnesium (Mg) deficiency on 3-year-old Scots pine (Pinussylvestris L.) seedlings were studied during a field experiment extending over two growth periods. Seedlings were grown in quartz sand in 7.5-L pots watered with nutrient solutions in which the Mg content was reduced to 30 and 0% of the control level (15 mg/L in the first and 3 mg/L in the second growth period). During the first growing period the Mg content of needles at the 0% Mg level was significantly lower than at the 30% level, and in the second growth period a decline was clear at both deficiency levels. Swelling of phloem cells was observed in samples taken after 4 weeks' exposure, and the frequency of swollen phloem cells increased towards autumn and through the second growth period. At the end of the first growing period a decrease in the number of thylakoids per granum and an increase in the number of plastoglobuli in chloroplasts of mesophyll cells were detected at both deficiency levels. During the second growing period the tips of needles from the previous year in the 0% Mg level group became brown, and these needles were shed in autumn from some of the seedlings. The chloroplasts in these needles were rounded and the thylakoids were abnormally organized. Structural symptoms caused by Mg deficiency were observable before visual changes and before a clear decrease in Mg content had occurred, thus showing the value of structural observations in early diagnosis of this stress.


1992 ◽  
Vol 57 ◽  
Author(s):  
D. Maddelein ◽  
N. Lust

The  study of a seventy years old stand of Scots pine on drift sands proves that  Scots pine growth on these sites was and is still relatively good: average  diameter 27.6 cm, average height 19.4 m, standing volume 213 m3 and an annual increment  of 4.9 m3.ha-1.yr-1. All Scots pines  belong to the upper storey. Yet considerable differences in crown development  and vitality are observed. The current growth rate and the spontaneous  settlement of pine seedlings under canopy show the ideal conditions for the  creation of a high forest with reserves. Anyway a rotation period of more  than 70 years is recommendable.     On several places a consolidated regeneration of Scots pine seedlings under  canopy occur. Groups with a stem number of 700 to 3,500 seedlings per are, ranging  in age from 3 to 11 years and in height from 10 to 170 cm, are present. This  Scots pine regeneration has developed in a normal mor humus layer and in a  dense Deschampsia mat.      Broadleaved regeneration is not so abundant, and consists for 75 % of black  cherry. Absence of seed trees, browsing damage and the exclusive character of  black cherry are the limiting factors for the installation and survival of  valuable indigenous species, such as pedunculate oak.     Provided that black cherry is removed and that the regeneration is  protected against wild damage, it is possible to create a mixed forest  dominated by Scots pine but with a considerable admixture of indigenous  broadleaved trees. However, if black cherry will not be sufficiently  controlled, it can be expected that in a first phase black cherry will  dominate the understorey, that it will prevent the regeneration of all other  species and that, very soon, it will form an almost single-species dominated  stage in forest succession.


1999 ◽  
Vol 14 (3) ◽  
pp. 164-168 ◽  
Author(s):  
Michael J. Pipas ◽  
Gary W. Witmer

Abstract A 2 yr study on the Rogue River and Mt. Hood National Forests in Oregon evaluated physical barriers for protection of Pinus ponderosa seedlings against damage by Thomomys talpoides. Seedlings protected with one of three weights of: (1) plastic mesh tubing (Vexar®) or (2) sandpapertubing (Durite®) were evaluated against control seedlings. On the Rogue River sites, Vexar® seedlings had the highest survival (62.6%), followed by the controls (59.1%), then Durite® seedlings (17.9%). Gophers were the primary cause of death for the Vexar® seedlings, versus desiccation for the Durite® seedlings. On the Mt. Hood sites, heavyweight Vexar® seedlings had the highest survival (35.4%), medium-weight Durite® seedlings the lowest (2.7%). Seedling mortality caused by gophers was highest for controls (70.2%), followed by light-weight (62.2%) and heavy-weight (53.9%) Vexar® treatments. Overall survival was low (Rogue River = 42%, Mt. Hood = 19.8%). Growth was greatest for the control seedlings but only significantly greater than growth of Durite® seedlings on the Rogue River sites. Growth of seedlings was not compromised by the Vexar® tubing. Although neither type of tubing was highly protective, Vexar® tubes performed better than Durite® tubes. West. J. Appl. For. 14(3):164-168.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 846
Author(s):  
Aleksandra Halarewicz ◽  
Antoni Szumny ◽  
Paulina Bączek

In temperate European forests invaded by Prunus serotina Ehrh. (black cherry), a reduction in the spontaneous regeneration capacity of Pinus sylvestris L. (Scots pine) is observed. It could be caused by various factors, including allelopathic properties of this invasive plant. In this study the phytotoxic effect of P. serotina volatile compounds on P. sylvestris and the seasonal variation in this effect were assessed. Simple assays showed that volatiles emitted from P. serotina leaves significantly inhibited root growth of P. sylvestris seedlings. Their negative effect on stem growth was much weaker. The strongest phytotoxic effect on Scots pine seedlings was caused by the volatiles emitted from the youngest black cherry leaves. In fresh foliage of P. serotina, nineteen volatile organic compounds were identified by gas chromatography–mass spectrometry (GC–MS). The dominant compound was benzaldehyde. On the basis of tests of linalool alone, it was found that this monoterpene present in the volatile fraction has a strong allelopathic potential and inhibits germination, root elongation and shoot elongation of pine seedlings. The results of our research suggest that volatile compounds from P. serotina leaves could limited survival of P. sylvestris individuals in the seedling phase.


1990 ◽  
Vol 20 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Jarmo K. Holopainen

The responses of young Scots pine seedlings to mechanical apical meristem damage before and after 4 nights exposure to minimum night temperatures of −2.2 and −6.7 °C in controlled environment growth chambers were compared with control seedlings that were subjected or not to apical meristem damage and exposed to a minimum night temperature of 12 °C. The feeding damage caused by Lygus bugs was simulated by piercing the apical meristem of young pine seedlings with a hypodermic syringe needle and injecting a small drop of distilled water into the wound. At −6.7 °C increased numbers of dead seedlings were found. The proportion of seedlings with multiple leaders greatly increased after piercing, and about half of the seedlings subjected to the apical meristem damage had multiple leaders. The proportion of seedlings with multiple leaders and the number of leader shoots per seedling did not differ among seedlings subjected to apical meristem damage before or after the frost exposure. Short and twisted primary needles occurred in the basal parts of the new shoots in the seedlings with multiple leaders. Seedlings with necrotic needles were most often found after exposure to the night temperature of −6.7 °C. Shoot dry weight and length were significantly lower in seedlings subjected to apical meristem damage after frost exposure than in seedlings subjected to apical meristem damage before frost exposure or to no frost exposure. The results suggest that an increased reduction in growth is to be expected if Lygus bug attacks occur on pine seedlings that already suffer from frost injury.


Sign in / Sign up

Export Citation Format

Share Document