scholarly journals Cultivation of herbicide resistant crops: Weed management and environmental aspects

2000 ◽  
Vol 36 (No. 3) ◽  
pp. 112-116
Author(s):  
K. Hurle ◽  
J. Petersen

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


Weed Science ◽  
1997 ◽  
Vol 45 (4) ◽  
pp. 465-465 ◽  
Author(s):  
William E. Dyer

2021 ◽  
Vol 32 (4) ◽  
pp. 151-157
Author(s):  
Raven A. Bough ◽  
Phillip Westra ◽  
Todd A. Gaines ◽  
Eric P. Westra ◽  
Scott Haley ◽  
...  

The authors discuss the importance of wheat as a global food source and describe a novel multi-institutional, public-private partnership between Colorado State University, the Colorado Wheat Research Foundation, and private chemical and seed companies that resulted in the development of a new herbicide-resistant wheat production system.


2005 ◽  
Vol 75 (4) ◽  
pp. 79-84 ◽  
Author(s):  
D. Shaner

Some of the first products of biotechnology to reach the marketplace have been herbicide-resistant crops. Industry sees the development of herbicide-resistant varieties as a way to increase the availability of proven herbicides for a broader range of crops. However, the development of herbicide- resistant crops requires special attention to potential environmental questions such as herbicide usage, selection of resistant weed biotypes and spread of resistance from the resistant crop to wild species. Industry is actively addressing these concerns during the process of development. Proper development and use of herbicide-resistant crops in integrated weed management programs will provide farmers with increased flexibility, efficiency, and decreased cost in their weed control practices without increasing the risk of herbicide-resistant weeds. Furthermore, herbicide-resistant crops should prove to be valuable tools in managing herbicide- resistant weeds.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Jéssica F. L. Leal ◽  
Amanda dos S. Souza ◽  
Junior Borella ◽  
André Lucas S. Araujo ◽  
Ana Claudia Langaro ◽  
...  

Abstract Herbicide-resistant weed management is one of the greatest agricultural challenges in crop production. Thus, the quick identification of resistant-herbicide weeds is extremely important for management. This study aimed to evaluate resistance to PSI-inhibitor herbicides (diquat) of Sumatran Fleabane [(Erigeron sumatrensis (Retz.) E.Walker)] and physiological response to paraquat application. The research was conducted with two E. sumatrensis biotypes, one susceptible and the other with multiple resistance to herbicides from five different modes of action (glyphosate, paraquat, diuron, saflufenacil, and 2,4-D). A dose-response assay was carried out to evaluate herbicide resistance to diquat in paraquat-resistant E. sumatrensis biotype. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), hydrogen peroxide (H2O2) content, and chlorophyll a fluorescence were measured in both biotypes after paraquat (400 g ai ha−1) application. The dose-response assay confirmed resistance of E. sumatrensis to diquat with resistance factor levels of 26-fold and 6-fold for LD50 and GR50 values, respectively, compared with the susceptible biotype. The accumulation of H2O2 occurred faster in the paraquat-susceptible biotype than in the resistant ones. Paraquat treatment caused an increase in SOD and APX activity in the susceptible biotype, but antioxidant enzyme activities were unaffected by paraquat in the resistant one at 5 hours after application (HAA). Chlorophyll a fluorescence increased along the first 4 HAA in both resistant and susceptible biotypes. However, at 24 HAA the resistant biotype showed a decline in fluorescence close to untreated plants while susceptible one died, which can be used to diagnose paraquat resistance at 24 HAA. There is confirmed resistance to diquat in a paraquat-resistant E. sumatrensis biotype. The paraquat-resistant biotype does not induce antioxidative enzymes, as a possible mechanism of resistance to paraquat, but shows a fast recovery of photosynthesis and continuous growth when subjected to paraquat, while the paraquat-susceptible biotype does not survive.


2021 ◽  
Vol 32 (5) ◽  
pp. 203-207
Author(s):  
M. Alejandro Garcia ◽  
Lucia V. Meneses ◽  
Tiago Edu Kaspary

Uruguayan agriculture has undergone dramatic changes in the last 50 years driven by the adoption of new agricultural production systems that incorporate zero tillage and herbicide resistant crops. This has resulted in a shift in weed species frequencies and the dispersion of introduced herbicide resistant weed populations. Finally, integrated weed management tools are being developed by research and extension services to manage herbicide-resistant (HR) weeds better and to reduce environmental impact of herbicides.


1997 ◽  
Vol 51 (3) ◽  
pp. 367-370 ◽  
Author(s):  
Dale L. Shaner ◽  
David A. Feist ◽  
E. James Retzinger

2004 ◽  
Vol 18 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
K. Neil Harker ◽  
George W. Clayton ◽  
John T. O'Donovan ◽  
Robert E. Blackshaw ◽  
F. Craig Stevenson

Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.


2000 ◽  
Vol 93 (5) ◽  
pp. 1437-1443 ◽  
Author(s):  
L. D. Buckelew ◽  
L. P. Pedigo ◽  
H. M. Mero ◽  
M. D. K. Owen ◽  
G. L. Tylka

Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Thomas R. Butts ◽  
Bruno C. Vieira ◽  
Débora O. Latorre ◽  
Rodrigo Werle ◽  
Greg R. Kruger

AbstractWaterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] is a troublesome weed occurring in cropping systems throughout the U.S. Midwest with an ability to rapidly evolve herbicide resistance that could be associated with competitive disadvantages. Little research has investigated the competitiveness of differentA. tuberculatuspopulations under similar environmental conditions. The objectives of this study were to evaluate: (1) the interspecific competitiveness of three herbicide-resistantA. tuberculatuspopulations (2,4-D and atrazine resistant [2A-R], glyphosate and protoporphyrinogen oxidase [PPO]-inhibitor resistant [GP-R], and 2,4-D, atrazine, glyphosate, and PPO-inhibitor susceptible [2AGP-S]) with soybean [Glycine max(L.) Merr.]; and (2) the density-dependent response of eachA. tuberculatuspopulation within a constant soybean population in a greenhouse environment.Amaranthus tuberculatuscompetitiveness with soybean was evaluated across five target weed densities of 0, 2, 4, 8, and 16 plants pot−1(equivalent to 0, 20, 40, 80, and 160 plants m−2) with 3 soybean plants pot−1(equivalent to 300,000 plants ha−1). At the R1 soybean harvest time, no difference in soybean biomass was observed acrossA. tuberculatuspopulations. AtA. tuberculatusdensities <8 plants pot−1, the 2AGP-S population had the greatest biomass and stem diameter per plant. At the R7 harvest time, the 2AGP-S population caused the greatest loss in soybean biomass and number of pods compared with the other populations at densities of <16 plants pot−1. The 2AGP-S population had greater early-season biomass accumulation and stem diameter compared with the otherA. tuberculatuspopulations, which resulted in greater late-season reduction in soybean biomass and number of pods. This research indicates there may be evidence of interspecific competitive fitness cost associated with the evolution of 2,4-D, atrazine, glyphosate, and PPO-inhibitor resistance inA. tuberculatus. Focus should be placed on effectively using cultural weed management practices to enhance crop competitiveness, especially early in the season, to increase suppression of herbicide-resistantA. tuberculatus.


Sign in / Sign up

Export Citation Format

Share Document