Three-dimensional diffraction-free Airy pulses in the medium of carbon nanotubes under the conditions of an optical resonator

Author(s):  
A.M. Belonenko ◽  
◽  
Yu.V. Dvuzhilova ◽  
I.S. Dvuzhilov ◽  
M.B. Belonenko ◽  
...  

Theoretically investigated the propagation of three-dimensional extremely short optical pulses, the longitudinal Airy cross section in a medium of semiconductor carbon nanotubes under the conditions of an optical resonator. Using numerical simulations, it was found that carbon nanotubes placed in an optical resonator create an environment in which the pulse propagates stably and conserves its energy, and also makes it possible to control some properties of an extremely short pulse (velocity and shape). The calculations of the pulse dynamics were carried out at long times, on the order of 100 ps.

2022 ◽  
Vol 130 (3) ◽  
pp. 407
Author(s):  
А.М. Белоненко ◽  
И.С. Двужилов ◽  
Ю.В. Двужилова ◽  
М.Б. Белоненко

The propagation of three-dimensional extremely short optical pulses (light bullets) with a Bessel cross section in a medium of carbon nanotubes placed in an optical resonator is considered. As a result of numerical calculations, it was found that such pulses propagate stably with conservation of energy in a limited region of space, including at large times of the order of 100 ps. Key words: extremely short optical pulses, nonlinear medium, light bullets, carbon nanotubes.


2021 ◽  
Vol 129 (1) ◽  
pp. 92
Author(s):  
И.С. Двужилов ◽  
Ю.В. Двужилова ◽  
М.Б. Белоненко

In this work, we considered the evolution of extremely short optical pulses in a photonic crystal of semiconductor carbon nanotubes placed in an external pumping field. The possibility of stable propagation of electromagnetic pulses under conditions of a pumping and damping field, due to the balance of dissipative forces and an external field, is shown. The stability of the shape of an extremely short optical pulse at long times is demonstrated with a change in various parameters of the medium, such as the period of inhomogeneity of carbon nanotubes in a photonic crystal and the modulation depth of the refractive index.


2016 ◽  
Vol 30 (34) ◽  
pp. 1650405
Author(s):  
Alexander V. Zhukov ◽  
Roland Bouffanais ◽  
Mikhail B. Belonenko ◽  
Elena N. Galkina

In this paper, we study the behavior of three-dimensional extremely-short optical pulses propagating in a system made of carbon nanotubes in the presence of an external magnetic field applied perpendicular both to the nanotube axis and to the direction of propagation of the pulse. The evolution of the electromagnetic field is classically derived on the basis of the Maxwell’s equations. The electronic system of carbon nanotubes is considered in the low-temperature approximation. Our analysis reveals the novel and unique ability of controlling the shape of propagating short optical pulses by tuning the intensity of the applied magnetic field. This effect paves the way for the possible development of innovative applications in optoelectronics.


2011 ◽  
Vol 54 (1) ◽  
pp. 77-85
Author(s):  
M. B. Belonenko ◽  
N. G. Lebedev ◽  
E. N. Galkina ◽  
M. M. Shakirzyanov

2017 ◽  
Vol 161 ◽  
pp. 02008
Author(s):  
Ilya Dvuzhilov ◽  
Yulia Dvuzhilova ◽  
Mikhail Belonenko ◽  
Irina Zaporotskova ◽  
Natalia Boroznina

2019 ◽  
Vol 33 (23) ◽  
pp. 1950275
Author(s):  
Y. V. Dvuzhilova ◽  
I. S. Dvuzhilov ◽  
A. V. Ten ◽  
E. V. Boroznina ◽  
M. B. Belonenko

We have considered the problem of dynamic propagation of the three-dimensional few-cycle optical pulses of Gaussian and super-Gaussian cross-section inside the Bragg medium with carbon nanotubes. The system has dissipation and additional energy “pumping”. We have shown that the pulse propagation is stable inside the considered environment. The special aspect of the pulse evolution of different cross-sections has been determined.


Sign in / Sign up

Export Citation Format

Share Document