scholarly journals INVESTIGATION OF THE STABILITY OF AN UNMANNED AERIAL VEHICLE WING OPTIMIZING IN TERMS OF ITS INITIAL SHAPE

Author(s):  
Kirill Aleksandrovich STEPANOV ◽  
◽  
Sergey Viktorovich TIMCHENKO ◽  
◽  
2018 ◽  
Vol 7 (2.3) ◽  
pp. 18
Author(s):  
Mishell D. Lawas ◽  
Sherwin A. Guirnaldo

The stability of an Unmanned Aerial Vehicle (UAV) during actual flight conditions is one parameter that is very important in systems design in Avionics. In this research, two sensors, the autopilot microcontroller and the smartphone gyroscope sensing mechanism, are fused together and calibrated to monitor the flying behavior of the UAV prior to actual test flights. The two fused sensors and installed inside the UAV for relatively increased sensing accuracy and best flight monitoring capabilities. A Kalman filter is used as fusion technique and a Stewart Motion tracker is also used to test the ruggedness and accuracy of the fused sensor system. Experiment results show that fused system can give an overall mean square error or 1.9729.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 731-739 ◽  
Author(s):  
Bo Hang Wang ◽  
Dao Bo Wang ◽  
Zain Anwar Ali ◽  
Bai Ting Ting ◽  
Hao Wang

Attitude, speed, and position of unmanned aerial vehicles are susceptible to wind disturbance. The types, characteristics, and mathematical models of the wind, which have great influence on unmanned aerial vehicle in the low-altitude environment, are summarized, including the constant wind, turbulent flow, many kinds of wind shear, and the propeller vortex. Combined with the mathematical model of the unmanned aerial vehicle, the mechanism of unmanned aerial vehicle movement in the wind field is illustrated from three different kinds of viewpoints including velocity viewpoint, force viewpoint, and energy viewpoint. Some simulation tests have been implemented to show the effects of different kinds of wind on unmanned aerial vehicle’s path and flight states. Finally, some proposals are presented to tell reader in which condition, which wind model should be added to simulation, and how to enhance the stability of unmanned aerial vehicle for different kinds of wind fields.


2019 ◽  
Vol 38 (4) ◽  
pp. 403-421 ◽  
Author(s):  
Burak Yüksel ◽  
Cristian Secchi ◽  
Heinrich H. Bülthoff ◽  
Antonio Franchi

This paper proposes the use of a novel control method based on interconnection and damping assignment–passivity-based control (IDA-PBC) in order to address the aerial physical interaction (APhI) problem for a quadrotor unmanned aerial vehicle (UAV). The apparent physical properties of the quadrotor are reshaped in order to achieve better APhI performances, while ensuring the stability of the interaction through passivity preservation. The robustness of the IDA-PBC method with respect to sensor noise is also analyzed. The direct measurement of the external wrench, needed to implement the control method, is compared with the use of a nonlinear Lyapunov-based wrench observer and advantages/disadvantages of both methods are discussed. The validity and practicability of the proposed APhI method is evaluated through experiments, where for the first time in the literature, a lightweight all-in-one low-cost force/torque (F/T) sensor is used onboard of a quadrotor. Two main scenarios are shown: a quadrotor responding to external disturbances while hovering (physical human–quadrotor interaction), and the same quadrotor sliding with a rigid tool along an uneven ceiling surface (inspection/painting-like task).


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yang Chen ◽  
Jianhong Liang ◽  
Chaolei Wang ◽  
Yicheng Zhang ◽  
Tianmiao Wang ◽  
...  

A guidance law has been designed to guide the small unmanned aerial vehicle towards the predefined horizontal smooth path. The guidance law only needs the mathematical expression for the predefined path, the positions, and the velocities of the vehicle in the horizontal inertial frame. The stability of the guidance law has been demonstrated by the Lyapunov stability arguments. In order to improve the path following performance, one of the parameters of the guidance law is tuned by using the fuzzy logic which will still keep its stability. The simulation experiments in the Matlab/Simulink environment to realize the square-, circular-, and the athletics track-style paths following are given to verify the effectiveness of the proposed method. The simulation results show that the path following performance will be improved with smaller overshoot and oscillation amplitude and shorter arrival time with the parameter tuned.


2016 ◽  
Vol 3 (1-2.) ◽  
Author(s):  
Endrowednes Kuantama ◽  
Ioan Tarca ◽  
Radu Tarca ◽  
Dan Craciun

Quadcopter is one of Unmanned Aerial Vehicle (UAV) which has two pairs of identical fixed pitched rotor propellers. It can fly autonomously based on pre-programmed flight or manually controlled by a remote, and every movement achieved by varying the speed of each rotor independently. The orientation of quadcopter axes relative to a reference line and its direction of motion are known as attitude. Fly control factors are affected by attitude determination which can be calculated from 3 possible angles using combined measurement. Gyroscope and accelerometer are primary sensors to control quadcopter attitude, but magnetometer sensor and GPS also used to enhance the stability during flight. This paper will focus on details of function and mathematical formula of every factor regarding fly control and comparative data of 2 types of orientation sensor used in this system.


2013 ◽  
Vol 325-326 ◽  
pp. 984-989
Author(s):  
Cristina Mihailescu ◽  
Ioan Farcasan

The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used for local observations, surveillance and monitoring of interest area or as a training target for anti-aircraft systems. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using a nonlinear model, as well as a linear one for obtaining the guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and an autonomous control system. This theoretical development allows us to build the stability matrix, command matrix and the control matrix and finally to analyze the stability of autonomous UAV flight. A robust guidance system, based on Kalman filter will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analyzed. The paper is inspired by national project SAMO (Autonomous Aerial Monitoring System for Interest Areas of Great Endurance). Keywords: UAV, Simulation, Control, Guidance, Endurance, Surveillance, Monitoring, Kalman filter


2020 ◽  
Vol 4 (157) ◽  
pp. 178-183
Author(s):  
L. Romaniuk ◽  
I. Chykhira

Purpose. The aim of the article is to reveal the mechanism of formation of safe UAV movement in the conditions of radio attacks. Methodology. Scientists from Ternopil National Technical University named after Ivan Pulyuy have consistently developed and studied several mechanisms for the formation of safe movement of unmanned aerial vehicles in radio attacks in order to create a perfect model with which to launch UAVs in areas with high radio attack. As a result of previous work, the mechanism of formation of safe movement of UAVs in the conditions of radio attacks based on methods of increasing the stability of providing information about the route of the unmanned aerial vehicle in the use of REP and air defense systems. Results. The article reveals the mechanism of formation of safe movement of unmanned aerial vehicle in the conditions of radio attacks. Analysis of known solutions in the field of increasing the stability of the control path of unmanned aerial vehicles and electronic suppression demonstrated the relevance of the problem of forming flight routes of unmanned aerial vehicles bypassing opposing enemy areas, taking into account the use of air defense and electronic warfare. The authors emphasize that most drone control tasks are now automated due to their high complexity and versatility. An automated control system operating under the control of a human operator is used as a control factor on an unmanned aircraft. It is emphasized that the main threats to unmanned aerial vehicles in modern conditions are the possibility of their destruction by air defense systems, as well as disruption of the radio communication and control system between the control center and the UAV by electronic suppression. The need for constant tracking of UAV flight by transmitting commands from the launcher is revealed. It is also emphasized the low level of automation of the onboard control system of the unmanned aerial vehicle and the inability to make adequate decisions on information received from onboard sensors in complex situations that require constant monitoring of UAV flight by a human operator. Scientific novelty. For the first time the functional scheme of the UAV recognition mechanism in the conditions of radio attacks is developed and the mechanism of formation of safe movement of the UAV in the conditions of radio attacks which is based on three basic techniques is defined. The first method is the method of clustering the flight zones of an unmanned aerial vehicle according to the degree of control stability. Based on the second method, the authors propose a method of forming the routes of UAV flights, taking into account the location of air defense and electronic warfare. The last link is the method of assessing the stability of providing information about the route of the unmanned aerial vehicle in terms of the use of air defense and electronic warfare. Practical relevance. The results of the work can be implemented in the process of forming the safe movement of UAVs in the conditions of radio attacks. Keywords: unmanned aerial vehicle; air traffic control; space; security; flight.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Wei He ◽  
Suxia Zhang

In this study, the stability parameter range of a tethered quadrotor unmanned aerial vehicle (UAV) under the action of the transient wind field is numerically analyzed, which can provide a theoretical basis for the design and application of such systems. Three factors affecting the stability of tethered UAV system are determined, namely, cable tension, cable elongation, and UAV vibration velocity, and the corresponding judgment criteria are obtained. Specifically, the priority of the three criteria sequentially decreases. According to these criteria, the stability parameter range of the tethered UAV is examined under the cable parameters such as length, diameter, and elastic modulus and the environmental parameters such as the amplitude and period of the wind field. The results show that for designing the tethered UAV structure, by reducing the length of the tethered cable and increasing its diameter and elastic modulus, the working stability of tethered UAV system can be improved.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Haiyun Bi ◽  
Guoyuan Qi ◽  
Jianbing Hu

A model of the attitude system for a quadrotor unmanned aerial vehicle (QUAV), assumed to be a rigid body, is developed. For specific parameter configurations, a chaotic region with a saddle and two stable node-focus equilibrium points is identified. The chaotic model provides an important reference for dynamic analysis and a challengeable task of controller design once the flight enters the chaotic region of parameters. The pitchfork bifurcation of the equilibrium points is provided. Rich dynamics of the system are revealed by two bifurcation regions, which demonstrates the diversity of the flight behaviors as the parameters vary. One bifurcation analysis is with respect to the speed of the front propeller and the speed difference of the front and left propellers, and another one is with respect to the speed of the front propeller and moment of inertia. The dynamic characteristics of the QUAV are further verified by the Casimir power bifurcations. The trajectories of three settings with different structural parameters are analyzed in detail. The stability of the QUAV is found to be enhanced for certain optimized values of the structural parameters. Finally, using the Casimir power and Lagrange multiplier method, a supremum bound of the chaotic attractor is presented.


Sign in / Sign up

Export Citation Format

Share Document