scholarly journals Estimation of Deep Soil Profiles in Lima Peru

Author(s):  
Diana Calderon ◽  
Fernando Lazares ◽  
Zenon Aguilar ◽  
Toru Sekiguchi ◽  
Shoichi Nakai
Keyword(s):  
1975 ◽  
Vol 39 (6) ◽  
pp. 1220-1223
Author(s):  
K. M. Holtzclaw ◽  
J. M. Rible ◽  
P. F. Pratt
Keyword(s):  

1972 ◽  
Vol 1 (1) ◽  
pp. 97-101 ◽  
Author(s):  
P. F. Pratt ◽  
W. W. Jones ◽  
V. E. Hunsaker

2020 ◽  
Author(s):  
Rui Xu ◽  
Xiaoxu Sun ◽  
Feng Han ◽  
Enzong Xiao ◽  
Baoqin Li ◽  
...  

Abstract BackgroundSoil microbes play critical roles in the biogeochemical cycling of antimony (Sb) and arsenic (As), and the effects of Sb and As contamination on soil microbiota have been well documented in surface soils (< 0.2 m). However, their effects in deep soils remain poorly understood. This study determined the depth-resolved effects of Sb and As contamination on the microbial adaptation throughout soil profiles (0–2 m) and compared contaminated soil samples to uncontaminated samples.Methods16S rRNA amplicon sequencing and shotgun metagenomic sequencing were employed to investigate the microbial community and their metabolism traits in soil profiles. Co-occurrence network analysis was used to present the pairwise interactions of microbes.ResultsAs soil depth increased, Acidobacteria (18.8%–44.7% from top to bottom, hereafter), Chloroflexi (8.7%–42.4%), Proteobacteria (11.4%–27.1%), and Thaumarchaeota (0.49%–20.17%) were the most variable phyla from surface to deep soil. A set of co-occurrence networks revealed an obvious changing pattern of microbial interactions as soil depth increased. The networks were loosely connected in the heavily contaminated surface soil but gradually recovered and were well connected in the less contaminated deep soil. Results suggested that individual species became more connected with other patterns to perform syntrophic functions in the less contaminated soil depth. Shotgun metagenomic sequencing results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with Sb and As concentrations. A set of arsenic-related genes was enriched by the high Sb and As contamination but reduced with soil depth. ConclusionsSoil depth-resolved characteristics are often many meters deep and their microbial diversity and community structures obviously change along their vertical soil profiles due to different nutrient contents and biomasses. The significance of this study is that it further reveals how the microbial communities and microbial physiological traits respond to different soil profiles contaminated by high concentrations of Sb and As.


2019 ◽  
Vol 39 (18) ◽  
Author(s):  
冯棋 FENG Qi ◽  
杨磊 YANG Lei ◽  
王晶 WANG Jing ◽  
石学圆 SHI Xueyuan ◽  
汪亚峰 WANG Yafeng

2020 ◽  
Vol 96 (11) ◽  
Author(s):  
Rui Xu ◽  
Xiaoxu Sun ◽  
Hanzhi Lin ◽  
Feng Han ◽  
Enzong Xiao ◽  
...  

ABSTRACT Antimony mining has resulted in considerable pollution to the soil environment. Although studies on antinomy contamination have been conducted, its effects on vertical soil profiles and depth-resolved microbial communities remain unknown. The current study selected three vertical soil profiles (0–2 m) from the world's largest antimony mining area to characterize the depth-resolved soil microbiota and investigate the effects of mining contamination on microbial adaptation. Results demonstrated that contaminated soil profiles showed distinct depth-resolved effects when compared to uncontaminated soil profiles. As soil depth increased, the concentrations of antimony and arsenic gradually declined in the contaminated soil profiles. Acidobacteria, Chloroflexi, Proteobacteria and Thaumarchaeota were the most variable phyla from surface to deep soil. The co-occurrence networks were loosely connected in surface soil, but obviously recovered and were well-connected in deep soil. The metagenomic results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with antimony and arsenic concentrations. Abundances of arsenic-related genes were enriched by severe contamination, but reduced with soil depth. Overall, soil depth-resolved characteristics are often many meters deep and such effects affected the indigenous microbial communities, as well as their metabolic potential due to different contaminants along vertical depths.


2019 ◽  
Author(s):  
Mohamed E. Elshamy ◽  
Daniel Princz ◽  
Gonzalo Sapriza-Azuri ◽  
Al Pietroniro ◽  
Howard S. Wheater ◽  
...  

Abstract. Permafrost is an important feature of cold regions hydrology, particularly in basins such as the Mackenzie River Basin (MRB), and needs to be properly represented in hydrological and land surface models (H-LSMs) built into existing Earth System models (ESM), especially under the unprecedented climate warming trends that have been observed. Higher rates of warming have been reported in high latitudes compared to the global average resulting in permafrost thaw with wide-ranging implications for hydrology and feedbacks to climate. The current generation of H-LSMs is being improved to simulate permafrost dynamics by allowing deep soil profiles and incorporating organic soils explicitly. Deeper soil profiles have larger hydraulic and thermal memories that require more effort to initialize. This study aims to devise a robust, yet computationally efficient, initialization and parameterization approach applicable to regions where data are scarce and simulations typically require large computational resources. The study further demonstrates an upscaling approach to inform large-scale ESM simulations based on the insights gained by modelling at small scales. We used permafrost observations from three sites along the Mackenzie River Valley spanning different permafrost classes to test the validity of the approach. Results show generally good performance in reproducing present-climate permafrost properties at the three sites. The results also emphasize the sensitivity of the simulations to the soil layering scheme used, the depth to bedrock and the organic soil properties.


2006 ◽  
Vol 55 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Tibor Németh ◽  
P. Sipos

The clay mineral composition of four brown forest soil profiles (Luvisols) developed on different parent rocks was studied in detail to determine the major clay mineral alteration processes. In the studied profiles a siltstone bedrock weathered to chlorite/vermiculite and vermiculite in a less developed, shallow soil profile, while the major product of soil formation in a clayey, well-developed deep soil is a typical soil montmorillonite with heterogeneous charge distribution. The most possible pathway of clay alteration is illite smectitization via charge reduction, and considerable degradation of smectite in the soil formed on limestone. On the contrary, weathering of andesite parent rock involves the formation of low charged smectite altering to high charged vermiculite during pedogenesis.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180371 ◽  
Author(s):  
Arthur Prudêncio de Araujo Pereira ◽  
Pedro Avelino Maia de Andrade ◽  
Daniel Bini ◽  
Ademir Durrer ◽  
Agnès Robin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document