scholarly journals Microbial adaptation in vertical soil profiles contaminated by antimony smelting plant

2020 ◽  
Author(s):  
Rui Xu ◽  
Xiaoxu Sun ◽  
Feng Han ◽  
Enzong Xiao ◽  
Baoqin Li ◽  
...  

Abstract BackgroundSoil microbes play critical roles in the biogeochemical cycling of antimony (Sb) and arsenic (As), and the effects of Sb and As contamination on soil microbiota have been well documented in surface soils (< 0.2 m). However, their effects in deep soils remain poorly understood. This study determined the depth-resolved effects of Sb and As contamination on the microbial adaptation throughout soil profiles (0–2 m) and compared contaminated soil samples to uncontaminated samples.Methods16S rRNA amplicon sequencing and shotgun metagenomic sequencing were employed to investigate the microbial community and their metabolism traits in soil profiles. Co-occurrence network analysis was used to present the pairwise interactions of microbes.ResultsAs soil depth increased, Acidobacteria (18.8%–44.7% from top to bottom, hereafter), Chloroflexi (8.7%–42.4%), Proteobacteria (11.4%–27.1%), and Thaumarchaeota (0.49%–20.17%) were the most variable phyla from surface to deep soil. A set of co-occurrence networks revealed an obvious changing pattern of microbial interactions as soil depth increased. The networks were loosely connected in the heavily contaminated surface soil but gradually recovered and were well connected in the less contaminated deep soil. Results suggested that individual species became more connected with other patterns to perform syntrophic functions in the less contaminated soil depth. Shotgun metagenomic sequencing results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with Sb and As concentrations. A set of arsenic-related genes was enriched by the high Sb and As contamination but reduced with soil depth. ConclusionsSoil depth-resolved characteristics are often many meters deep and their microbial diversity and community structures obviously change along their vertical soil profiles due to different nutrient contents and biomasses. The significance of this study is that it further reveals how the microbial communities and microbial physiological traits respond to different soil profiles contaminated by high concentrations of Sb and As.

2020 ◽  
Vol 96 (11) ◽  
Author(s):  
Rui Xu ◽  
Xiaoxu Sun ◽  
Hanzhi Lin ◽  
Feng Han ◽  
Enzong Xiao ◽  
...  

ABSTRACT Antimony mining has resulted in considerable pollution to the soil environment. Although studies on antinomy contamination have been conducted, its effects on vertical soil profiles and depth-resolved microbial communities remain unknown. The current study selected three vertical soil profiles (0–2 m) from the world's largest antimony mining area to characterize the depth-resolved soil microbiota and investigate the effects of mining contamination on microbial adaptation. Results demonstrated that contaminated soil profiles showed distinct depth-resolved effects when compared to uncontaminated soil profiles. As soil depth increased, the concentrations of antimony and arsenic gradually declined in the contaminated soil profiles. Acidobacteria, Chloroflexi, Proteobacteria and Thaumarchaeota were the most variable phyla from surface to deep soil. The co-occurrence networks were loosely connected in surface soil, but obviously recovered and were well-connected in deep soil. The metagenomic results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with antimony and arsenic concentrations. Abundances of arsenic-related genes were enriched by severe contamination, but reduced with soil depth. Overall, soil depth-resolved characteristics are often many meters deep and such effects affected the indigenous microbial communities, as well as their metabolic potential due to different contaminants along vertical depths.


2019 ◽  
Author(s):  
Alessia Visconti ◽  
Caroline I. Le Roy ◽  
Fabio Rosa ◽  
Niccolo Rossi ◽  
Tiphaine C. Martin ◽  
...  

AbstractThe human gut is inhabited by a complex and metabolically active microbial ecosystem regulating host health. While many studies have focused on the effect of individual microbial taxa, the metabolic potential of the entire gut microbial ecosystem has been largely under-explored. We characterised the gut microbiome of 1,004 twins via whole shotgun metagenomic sequencing (average 39M reads per sample). We observed greater similarity, across unrelated individuals, for functional metabolic pathways (82%) than for taxonomic composition (43%). We conducted a microbiota-wide association study linking both taxonomic information and microbial metabolic pathways with 673 blood and 713 faecal metabolites (Metabolon, Inc.). Metabolic pathways associated with 34% of blood and 95% of faecal metabolites, with over 18,000 significant associations, while species-level results identified less than 3,000 associations, suggesting that coordinated action of multiple taxa is required to affect the metabolome. Finally, we estimated that the microbiome mediated a crosstalk between 71% of faecal and 15% of blood metabolites, highlighting six key species (unclassified Subdoligranulum spp., Faecalibacterium prausnitzii, Roseburia inulinivorans, Methanobrevibacter smithii, Eubacterium rectale, and Akkermansia muciniphila). Because of the large inter-person variability in microbiome composition, our results underline the importance of studying gut microbial metabolic pathways rather than focusing purely on taxonomy to find therapeutic and diagnostic targets.


2020 ◽  
Author(s):  
Pudong Li ◽  
Jianping Xu ◽  
Zhengyi Wang ◽  
Hongye Li

Abstract Background: Like microbiomes in the rhizosphere, phyllosphere microbiomes can have an important role in plant growth and health. However, whether and how the phyllosphere microbiomes respond to the invasion of pathogens is not well understood. In this study, we address this question using the citrus phyllosphere-associated microbiome as a model.Results: Through DNA metabarcoding (16S for bacteria and ITS for fungi) and shotgun metagenomic sequencing, we found that phyllosphere microbiomes in different ecological habitats (epiphytes and endophytes) responded differently to melanose disease caused by the fungal pathogen Diaporthe citri on citrus (Citrus unshiu) leaves. We observed that citrus phyllosphere-associated microbiome responded to the melanose disease in five ways: (1) increasing microbial richness; (2) reducing community evenness; (3) enriching selected microbes; (4) enhancing microbial interactions; and (5) enriching functional features involved in metabolism and fungal cell wall degrading.Conclusions: Our study revealed how phyllosphere microbiomes in the epiphytic and endophytic habitats differ between diseased and healthy leaves. Based on the differences at both the taxonomic and functional levels, we propose a general conceptual paradigm to describe the different microbial community assembly processes for the phyllosphere microbiome in response to leaf disease and how such processes impact plant health. Our results provide novel insights for understanding the contributions of the phyllosphere microbial community response during pathogen invasion.


2020 ◽  
Author(s):  
Brooke Wilson ◽  
Tommi Vatanen ◽  
Thilini Jayasinghe ◽  
Karen Leong ◽  
José Derraik ◽  
...  

Abstract Background Donor selection is an important factor influencing the engraftment and efficacy of fecal microbiota transplantation (FMT) for complex conditions associated with microbial dysbiosis. However, the degree, variation, and stability of strain engraftment has not yet been assessed in the context of multiple donors. Methods We conducted a double-blinded randomised control trial of FMT in 42 adolescents with obesity. Participants were randomised to receive multi-donor FMT (capsules containing the fecal microbiota of four sex-matched lean donors) or placebo (saline capsules). Following a bowel cleanse, participants ingested a total of 28 capsules over two consecutive days. Capsules from individual donors and participant stool samples collected at baseline, 6-, 12-, and 26-weeks post-treatment were analysed by shotgun metagenomic sequencing allowing us to track bacterial strain engraftment and its functional implications on recipients’ gut microbiomes. Results Multi-donor FMT sustainably altered the structure and the function of the gut microbiome. In what was effectively a microbiome competition experiment, we discovered that two donor microbiomes (one female, one male) dominated strain engraftment and were characterised by high microbial diversity and a high Prevotella to Bacteroides (P/B) ratio. Engrafted strains led to enterotype-level shifts in community composition and provided genes that altered the metabolic potential of the community. Despite our attempts to standardise FMT dose and origin, FMT recipients varied widely in their engraftment of donor strains. Conclusion Our study provides evidence for the existence of FMT super-donors whose microbiomes are highly effective at engrafting in the recipient gut. Dominant engrafting male and female donor microbiomes harboured diverse microbial species and genes, and were characterised by a high P/B ratio. Yet, the high variability of strain engraftment among FMT recipients suggests the host environment also plays a critical role in mediating FMT receptivity. Trial registration The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001351505)


1975 ◽  
Vol 39 (6) ◽  
pp. 1220-1223
Author(s):  
K. M. Holtzclaw ◽  
J. M. Rible ◽  
P. F. Pratt
Keyword(s):  

2021 ◽  
Vol 9 (4) ◽  
pp. 707
Author(s):  
J. Christopher Noone ◽  
Fabienne Antunes Ferreira ◽  
Hege Vangstein Aamot

Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1041
Author(s):  
Rita Mormando ◽  
Alan J. Wolfe ◽  
Catherine Putonti

Polyomaviruses are abundant in the human body. The polyomaviruses JC virus (JCPyV) and BK virus (BKPyV) are common viruses in the human urinary tract. Prior studies have estimated that JCPyV infects between 20 and 80% of adults and that BKPyV infects between 65 and 90% of individuals by age 10. However, these two viruses encode for the same six genes and share 75% nucleotide sequence identity across their genomes. While prior urinary virome studies have repeatedly reported the presence of JCPyV, we were interested in seeing how JCPyV prevalence compares to BKPyV. We retrieved all publicly available shotgun metagenomic sequencing reads from urinary microbiome and virome studies (n = 165). While one third of the data sets produced hits to JCPyV, upon further investigation were we able to determine that the majority of these were in fact BKPyV. This distinction was made by specifically mining for JCPyV and BKPyV and considering uniform coverage across the genome. This approach provides confidence in taxon calls, even between closely related viruses with significant sequence similarity.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.


Sign in / Sign up

Export Citation Format

Share Document