Nonlinear Elastic Buckling of CFRP Reinforced Steel Cylinders under Axial Compression

Author(s):  
Krishna Kumar Bhetwal ◽  
Seishi Yamada ◽  
Yukihiro Matsumoto ◽  
ames G. A. Croll
Author(s):  
Phillip E. Wiseman ◽  
Zara Z. Hoch

Axial compression allowable stress for pipe supports and restraints based on linear elastic analysis is detailed in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF. The axial compression design by analysis equations within NF-3300 are replicated from the American Institute of Steel Construction (AISC) using the Allowable Stress Design (ASD) Method which were first published in the ASME Code in 1973. Although the ASME Boiler and Pressure Vessel Code is an international code, these equations are not familiar to many users outside the American Industry. For those unfamiliar with the allowable stress equations, the equations do not simply address the elastic buckling of a support or restraint which may occur when the slenderness ratio of the pipe support or restraint is relatively large, however, the allowable stress equations address each aspect of stability which encompasses the phenomena of elastic buckling and yielding of a pipe support or restraint. As a result, discussion of the axial compression allowable stresses provides much insight of how the equations have evolved over the last forty years and how they could be refined.


The mechanical properties (linear and nonlinear elastic and plastic) of two-dimensional cellular materials, or honeycombs, are analysed and compared with experiments. The properties are well described in terms of the bending, elastic buckling and plastic collapse of the beams that make up the cell walls.


2020 ◽  
Vol 20 (07) ◽  
pp. 2050074
Author(s):  
Kamran Foroutan ◽  
Habib Ahmadi

In this paper, semi-analytical and analytical methods for the nonlinear static and dynamic buckling analyses of imperfect functionally graded porous (FGP) cylindrical shells subjected to axial compression are presented. The structure is embedded within a generalized nonlinear elastic foundation, treated as a two-parameter Winkler–Pasternak foundation augmented by a nonlinear cubic stiffness. The material property of the shell changes continuously through the thickness. Two types of FGP distributions, i.e. uniform porosity distribution (UPD) and nonuniform porosity distribution (NPD), are considered. By applying the Galerkin’s method to the von Kármán equations, the buckling of the shells was solved. The fourth-order Runge–Kutta method is utilized to obtain the responses of nonlinear dynamic buckling (NDB). The results obtained for some special cases are compared with those available elsewhere. The effects of various geometrical properties, material parameters and elastic foundation coefficients are investigated on the nonlinear static buckling (NSB) and dynamic buckling (DB) analyses of the shells. It was shown that various types of porosity, imperfection and the elastic foundation parameters have a strong effect on the buckling behaviors of the FGP cylindrical shells.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950089 ◽  
Author(s):  
Hadi Babaei ◽  
Yaser Kiani ◽  
M. Reza Eslami

The present study aims to analyze the buckling and post-buckling behavior of the geometrically imperfect functionally graded pin-ended tube. Imperfect FGM tube is surrounded by nonlinear elastic medium and is subjected to the axial compression or various thermal loads. Pinned-pinned boundary conditions are movable or immovable for the FGM tube under axial compression or thermal loads, respectively. In thermal analysis, different types of thermal loads such as uniform temperature rise, linear temperature distribution, and heat conduction are analyzed and contrasted. Displacement field of the FGM tube satisfies the tangential traction-free boundary conditions on the inner and outer surfaces. Properties of the FGM tube are assumed to be temperature-dependent and are distributed through the radial direction of tube using a power law function. The governing equilibrium equations of the FGM tube are obtained by means of the virtual displacement principle. These are nonlinear coupled differential equations based on a higher order shear deformation tube theory and the von Kármán nonlinear assumption. The coupled nonlinear dimensionless differential equations are solved using the two-step perturbation method. These asymptotic solutions are as explicit functions of the axial compression or different types of thermal load. Numerical results are provided to explore the effects of the linear and nonlinear spring stiffness of elastic medium and imperfection parameter of the tube. The effects of the volume fraction index and two geometrical parameters of the FGM tube are also included.


Sign in / Sign up

Export Citation Format

Share Document