A semi-analytical analysis of the elastic buckling of cracked thin plates under axial compression using actual non-uniform stress distribution

2013 ◽  
Vol 73 ◽  
pp. 229-241 ◽  
Author(s):  
Zuxing Pan ◽  
Yuansheng Cheng ◽  
Jun Liu
1943 ◽  
Vol 10 (2) ◽  
pp. A69-A75
Author(s):  
Martin Goland

Abstract The purpose of this paper is to investigate the influence of several types of inclusions on the stress distribution in elastic plates under transverse flexure. An “inclusion” is defined as a close-fitting plate of some second material cemented into a hole cut in the interior of the elastic plate. Depending upon the properties of the material of which it is composed, the inclusion is described as rigid or elastic. In particular, the solutions presented will deal with the effects of circular inclusions of differing degrees of elasticity and rigid inclusions of varying elliptical form. Since the rigid inclusion and the hole are limiting types of elastic inclusions, and the circular shape is a special form of the ellipse, plates with either a circular hole or a circular rigid inclusion are important special cases of this discussion. It is hoped that the present analysis of several types of inclusions will aid in a future study of perforated plates stiffened by means of reinforcing rings fitted into the holes.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 121812
Author(s):  
Seong Do Hong ◽  
Jung Hwan Ahn ◽  
Kyung-Bum Kim ◽  
Jeong Hun Kim ◽  
Jae Yong Cho ◽  
...  

Author(s):  
Cheng Zhang ◽  
Jian-run Zhang ◽  
Xi Lu

The weak dynamic stiffness of thin plate is one of the important factors that limit the use of thin plate. Improving the dynamic stiffness of thin plate is one of the effective methods for the vibration control of thin plate. In this paper, the influence of pre-stress on the vibration characteristics of thin plate is studied. A vibration control method of thin plate based on pre-stress is proposed. The vibration differential equation of quadrate thin plate under pre-stressing is established. Using the Galerkin principle, the natural frequencies corresponding to the shape functions of the quadrate thin plates under pre-stressing in different distribution forms are obtained. By comparison, it is found that pre-stressing on the thin plate can change the dynamic stiffness of thin plate. In particular, tensile stress can increase the dynamic stiffness of thin plate while compressive stress can reduce the dynamic stiffness of the thin plate. The greater the pre-stress, the more obvious the effect. In the end, the requirements of the pre-stress distribution which can improve the dynamic stiffness of thin plate effectively are derived.


2020 ◽  
Vol 14 (2) ◽  
pp. 200-207 ◽  
Author(s):  
Tatsuhiko Aizawa ◽  
Yasuo Saito ◽  
Hideharu Hasegawa ◽  
Kenji Wasa ◽  
◽  
...  

Micro-embossing using plasma printed micro-punch was proposed to form micro-groove textures into the copper substrate for plastic packaging of hollowed GaN HEMT-chips. In particular, the micro-groove network on the copper substrate was optimized to attain uniform stress distribution with maximum stress level being as low as possible. Three-dimensional finite element analysis was employed to investigate the optimum micro-grooving texture-topology and to attain the uniform stress distribution on the joined interface between the plastic mold and the textured copper substrate. Thereafter, plasma printing was utilized to fabricate the micro-punch for micro-embossing of the micro-grooving network into the copper substrate as a designed optimum micro-texture. This plasma printing mainly consisted of three steps. Two-dimensional micro-pattern was screen-printed onto the AISI316 die surface as a negative pattern of the optimum CAD data. The screen-printed die was plasma nitrided at 673 K for 14.4 ks at 70 Pa under the hydrogen-nitrogen mixture for selective nitrogen supersaturation onto the unprinted die surfaces. A micro-punch was developed by mechanically removing the printed parts of die material. Then, fine computer numerical control (CNC) stamping was used to yield the micro-embossed copper substrate specimens. Twelve micro-textured substrates were molded into packaged specimens by plastic molding. Finally, gross leak testing was employed to evaluate the integrity of the joined interface. The takt time required to yield the micro-grooved copper substrate by the present method was compared to the picosecond laser micro-grooving; the former showed high productivity based on this parameter.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232976
Author(s):  
Korbinian Liebl ◽  
Martin Zacharias

2019 ◽  
Vol 136 ◽  
pp. 04043
Author(s):  
Guo Yanli ◽  
Song Xiaoqing ◽  
Li Xiao ◽  
Yao Xingyou ◽  
Xia Zhifan ◽  
...  

Stress redistribution will occur around the hole for the perforated plate under bending, and the buckling mode of bending plate is changed, which makes the design of bending plate more complicated. The finite element software ABAQUS is used to establish the perforated plate under bending model, analyze the degree of influence of the plate aspect ratio, width-thickness ratio, size and position of the holes, meanwhile, the distance between holes is also discussed. The results show that the thickness of the plate size and width-thickness ratio have little influence on the elastic buckling performance of thin plates with holes in bending. As the size of the holes increase, the influence is greater, and there is a certain regularity. The opening position is closer to the short side of the plate, the buckling coefficient of plate will be significantly decreased. The effect is greater with the increase of opening size, the distance between holes have a safe value, the position of the opening is more obvious for the buckling of the bending plate. Finally, based on the data from finite element analysis, the proposed formula of buckling stability coefficient k for the bending perforated plate is given.


Sign in / Sign up

Export Citation Format

Share Document