scholarly journals Natural Iron Chelators: An Orthomolecular Approach to Treat Iron Overload and Its Related Diseases

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Asmae Mesbahi El Aouame ◽  
Karima El Akkaly ◽  
Ilyes Baghli
Author(s):  
Zohreh Sajadi Hezaveh ◽  
Farzad Shidfar

Background: Iron overload can cause many complications and damage many organs as well as physiologic functions. Consumption of phetochemicals and flavonoids with iron chelating ability, instead of synthetic iron chelators, can be less harmful and more effective. The aim of this review is to investigate hydrophilic phytochelators in iron overload condition. Methods: In this review, the possible natural iron chelators including quercetin, rutin, bailcalin, silymarin, resveratrol, mimosine, tropolone, curcumine, catechin, kojic acid, and caffeic acid were investigated. Furthermore, the mechanisms through which they chelate iron were discussed. Results: The mentioned antioxidants eliminated excessive iron, decreased iron absorption, exerted antioxidant and anti-inflammatory activity without causing adverse effects and other metal deficiencies in iron overload condition. Conclusion: The combination of synthetic chelators with these antioxidants or their replacement with natural chelators could be possible treatments for iron overload.


2021 ◽  
Author(s):  
Naheed Waseem A. Sheikh ◽  
Satish B. Kosalge ◽  
Tusharbindu R. Desai ◽  
Anil P. Dewani ◽  
Deepak S. Mohale ◽  
...  

Iron overload disease is a group of heterogeneous disease, which is caused either due to hereditary or acquired condition. Excess of iron participate in redox reactions that catalyzes the generation of reactive oxygen species (ROS) and increases oxidative stress, which causes cellular damage and encourage the cell injury and cell death. The electronic databases of Scopus, PubMed and Google Scholar have been intensively searched for the research as well as review articles published with the full text available and with the key words such as natural iron chelating agent, synthetic iron chelating agents, iron overload disease, oxidative stress and antioxidant which were appearing in the title, abstract or keywords. In light of the literature review presented in this artial, based on meta-analyses, we suggest that iron chelating agents were used for the management of iron overload disease. These agents were having wide spectrum of activity, they were not only used for the management of iron overload disease but also used as anticancer and antioxidant in various oxidative stress mediated diseases. Last from many years Desferoxamine (DFO) was used as standard iron chelator but currently two new synthetic iron chelators such as Deferiprone (DFP) and Deferasirox (DFS) are available clinically. These clinically available synthetic iron chelators were having serious side effects and certain limitations. Phytochemicals such as flavonoids and polyphenols compounds were having iron chelating as well as antioxidant property with no or minimal side effects. Hence, this review provides an updates on natural iron chelation therapy for the safe and efficacious management of iron overload diseases.


2019 ◽  
Vol 26 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Upendra Bulbake ◽  
Alka Singh ◽  
Abraham J. Domb ◽  
Wahid Khan

Iron is a key element for every single living process. On a fundamental level, targeting iron is a valuable approach for the treatment of disorders caused by iron overload. Utilizing iron chelators as therapeutic agents has received expanding consideration in chelation therapy. Approved low molecular weight (MW) iron chelators to treat iron overload may experience short half-lives and toxicities prompting moderately high adverse effects. In recent years, polymeric/macromolecular iron chelators have received attention as therapeutic agents. Polymeric iron chelators show unique pharmaceutical properties that are different to their conventional small molecule counterparts. These polymeric iron chelators possess longer plasma half-lives and reduced toxicities, thus exhibiting a significant supplement to currently using low MW iron chelator therapy. In this review, we have briefly discussed polymeric iron chelators and factors to be considered when designing clinically valuable iron chelators. We have also discussed applications of polymeric iron chelators in the diseases caused by iron overload associated with transfusional hemosiderosis, neurodegenerative disorders, malaria and cancer. With this, research findings for new polymeric iron chelators are also covered.


2019 ◽  
Vol 65 (9) ◽  
pp. 1216-1222 ◽  
Author(s):  
Tadeu Gonçalves de Lima ◽  
Fernanda Luna Neri Benevides ◽  
Flávio Lima Esmeraldo Filho ◽  
Igor Silva Farias ◽  
Diovana Ximenes Cavalcante Dourado ◽  
...  

SUMMARY INTRODUCTION Iron overload is a broad syndrome with a large spectrum of causative etiologies that lead to iron deposition. When iron exceeds defenses, it causes oxidative damage and tissular disfunction. Treatment may prevent organ dysfunction, leading to greater life expectancy. METHODS Literature from the last five years was reviewed through the use of the PubMed database in search of treatment strategies. DISCUSSION Different pharmacological and non-pharmacological strategies are available for the treatment of iron overload and must be used according to etiology and patient compliance. Therapeutic phlebotomy is the basis for the treatment of hereditary hemochromatosis. Transfusional overload patients and those who cannot tolerate phlebotomy need iron chelators. CONCLUSION Advances in the understanding of iron overload have lead to great advances in therapies and new pharmacological targets. Research has lead to better compliance with the use of oral chelators and less toxic drugs.


Author(s):  
ANTHONY WINSTON ◽  
JAMES ROSTHAUSER ◽  
DAVID FAIR ◽  
JAMSHED BAPASOLA ◽  
WEERASAK LERDTHUSNEE

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 329
Author(s):  
Bohong Yu ◽  
Yinxian Yang ◽  
Qi Liu ◽  
Aiyan Zhan ◽  
Yang Yang ◽  
...  

The traditional iron chelator deferoxamine (DFO) has been widely used in the treatment of iron overload disease. However, DFO has congenital disadvantages, including a very short circular time and non-negligible toxicity. Herein, we designed a novel multi-arm conjugate for prolonging DFO duration in vivo and reducing cytotoxicity. The star-like 8-arm-polyethylene glycol (8-arm-PEG) was used as the macromolecular scaffold, and DFO molecules were bound to the terminals of the PEG branches via amide bonds. The conjugates displayed comparable iron binding ability to the free DFO. Furthermore, these macromolecule conjugates could significantly reduce the cytotoxicity of the free DFO, and showed satisfactory iron clearance capability in the iron overloaded macrophage RAW 246.7. The plasma half-life of the 8-arm-PEG-DFO conjugate was about 190 times than that of DFO when applied to an intravenously administered rat model. In conclusion, research indicated that these star-like PEG-based conjugates could be promising candidates as long circulating, less toxic iron chelators.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 117-117 ◽  
Author(s):  
Ivana De Domenico ◽  
Diane McVey Ward ◽  
James P. Kushner ◽  
Jerry Kaplan

Abstract Deferoxamine (DFO) is a high affinity Fe (III) chelator produced by Streptomyces pilosus that is used clinically to remove systemic iron in secondary iron overload disorders. DFO cannot be absorbed through the intestine and must be injected. As shown previously, De Domenico et al. EMBO J (2006), expression of Ferroportin (Fpn), the only mammalian iron exporter, can deplete cells of ferritin by lowering cytosolic iron and by exporting iron from cells. Fpn-mediated iron loss induces ferritin degradation by the proteosome. In this study we show that permeable iron chelators, desferirax or deferriprone also induce the proteosomal degradation of ferritin. In contrast, DFO-mediated iron chelation at clinically useful concentrations, leads to ferritin degradation in lysosomes. Immunochemical analysis revealed that DFO-treated cells show increased levels of LC3B, a protein required for autophagy, suggesting that DFO induces autophagy. Treatment of cells with desferasirox or deferriprone did not lead to accumulation of LC3B. Studies using high molecular weight conjugates of DFO or inhibitors of endocytosis showed that the presence of DFO in lysosomes was responsible for the induction of autophagy. Incubation of DFO-treated cells with 3-methyladenine, an autophagy inhibitor, does not, however, prevent ferritin loss suggesting there may be an alternate route for ferritin degradation. This hypothesis was confirmed by examining the effect of the proteosome inhibitor, MG132, on DFOinduced autophagy in cells treated with DFO and 3-methyladenine. Addition of MG132 to 3-methyladenine treated cells prevents ferritin degradation. These results indicate that ferritin degradation occurs by two routes: a DFO-induced entry of ferritin into lysosomes and a cytosolic route in which iron is extracted from ferritin prior to degradation by the proteosome.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 180-180 ◽  
Author(s):  
Mauricette Michallet ◽  
Mohamad Sobh ◽  
Stephane Morisset ◽  
Helene Labussiere ◽  
Marie Y. Detrait ◽  
...  

Abstract Iron overload (IO), primarily related to multiple red blood cell transfusions, is a relatively common complication in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. Elevated pre-transplant ferritin level, a surrogate marker of iron overload, was demonstrated to be an important cause of mortality and morbidity in patients who have undergone allo-HSCT. Excessive iron accumulation results in tissue damage and organ failure, mainly as a result of the generation of free radicals that cause oxidative damage and organ dysfunction. Iron chelators have been widely used leading to normalisation for ferritine level and lower IO-related complications. As iron has a fundamental role in cell survival affecting pathways involved in DNA synthesis, cell differentiation, and apoptosis, some studies evaluated the anti-proliferative activity of iron chelators in cancer and leukemia patients on disease recurrence. The objective of this study was to determine at a first time the impact of serum ferritin level measured at time of allogeneic HSCT in adult patients with hematological disorders on the different outcomes and to investigate at a second time the role of iron chelation on relapse incidence. We included 158 patients, 100 males and 58 females with a median age of 45 years (18-67) who underwent allo-HSCT between 2002 and 2010. There were 83 acute myeloid leukemias, 10 chronic myeloid leukemias, 11 myelodysplastic syndromes, 7 myeloproliferative disorders, 19 myelomas, 9 non-Hodgkin lymphomas, 6 Hodgkin diseases, 5 aplastic anemias and 3 hemoglobinopathies. Sixty-seven (42%) patients were sex mismatched (F→M:37; M→F:30); for ABO compatibility, 61% were compatible, 18% had minor incompatibility and 21% had major incompatibility. Concerning the HSCT procedures, 60 patients (38%) received peripheral blood stem cell and 98 (62%) received bone marrow from 97 (61%) HLA related donors [matched, n=76; mismatched, n=21], and 61 (39%) HLA unrelated donors [matched, n=36; mismatched, n=25] after myeloablative [n=64, (41%)] or reduced intensity conditioning [n=94, (59%)]. At transplantation, 91 (58%) were in complete remission (CR) or chronic phase [CR1: n=61 (67%); ≥CR2: n=30 (33%)]. The median serum ferritin level at HSCT was 1327 microg./l (26-14136); 31(20%) patients had a level 26-500, 33 (21%) had a level 500-2500, and 94 (59%) >2500. There was no significant correlation between the different ferritin levels, disease kind and status at HSCT. After transplantation, 23 patients received iron chelating agents after a serum ferritin level of 1000 microg/l and stopped when the level decreased below 1000. The cumulative incidence of acute GVHD ≥ II at 3 months was 14% (11-16.5) with 10.5% (8-13) for grade III and 7% (5-9) for grade IV; the 1 year cumulative incidence of limited and extensive chronic GVHD were 4% (2-6) and 12.4% (9-16) respectively. After a median follow-up of 18 months (1-106), the 5 years OS probability was 65% for patients with ferritin level below 500 microg./l, 39% for level between 500 and 2500 microg./l and 28% for level > 2500 micog./l, [Hazard ratio= 3.5 (1.5-8.1), p=0.002]; this was explained by a significant higher TRM in patients with level >2500 [Hazard ratio= 4.3 (1.02-18), p=0.04]. Interestingly, we found in multivariate analysis that patients receiving iron chelators had significantly better OS [5 years OS= 59% vs. 34% for non-chelated patients, Hazard ratio= 0.34 (0.15-0.76), p=0.008], (Figure 1a), and experienced less disease relapse [5 years relapse incidence= 18% vs. 41% for non-chelated patients, Hazard ratio= 0.22 (0.07-0.73), p=0.012], (Figure 1b). In conclusion, we confirmed the negative impact of iron overload on the outcomes allo-HSCT recipients. More importantly, we demonstrated that iron chelators have a positive impact in reducing disease relapse by the possible mechanism of iron deprivation in leukemic cells. This clinical observation needs to be confirmed by prospective randomized trials.Figure 1a: Overall survival probability and b: relapse incidence in patients with or without iron chelationFigure 1. a: Overall survival probability and b: relapse incidence in patients with or without iron chelation Disclosures: Michallet: Novartis: Honoraria, Research Funding. Nicolini:Novartis: Consultancy, Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document