scholarly journals Cool Materials and the Heat Island Effect: a bibliometric analysis

Author(s):  
Rodrigo Borges Nascimento Guedes ◽  
Marina Lavorato ◽  
Cláudia Cotrim Pezzuto

A current problem triggered by anthropological factors that many cities in the world face is the increase in temperature in urban centres caused by urban heat islands. There is a constant proposal for measures to reduce these effects, which can be harmful to the health and well-being of the population. The purpose of this work is to carry out a bibliometric mapping to analyse the published documents on cool materials regarding the mitigation effects of heat islands and to understand their origin and possible reasons that led to the study of this theme. From the SCOPUS database, searching for “Cool Material AND (Albedo OR Reflectance) AND Heat Island”, the scientific documents (engineering area) published between 1995 and 2021 were selected and analysed: the types of documents, their origin, the year of publication, the main authors and the journals in which they were published. Energy and Buildings and Building and Environment were the two main journals on the subject. 1995 had the first article published and coincided with the year of the first Conference of the Parties (COP1), on climate change. Through a bibliometric survey, it is possible to understand the importance of the beginning of this line of research and that climatic events can trigger interest and bring the scientific view to a certain area. However, because it is a single-base study, the research, despite bringing good information, still needs constant updates.

2020 ◽  
Author(s):  
Eunice Lo ◽  
Dann Mitchell ◽  
Sylvia Bohnenstengel ◽  
Mat Collins ◽  
Ed Hawkins ◽  
...  

<p>Urban environments are known to be warmer than their sub-urban or rural surroundings, particularly at night. In summer, urban heat islands exacerbate the occurrence of extreme heat events, posing health risks to urban residents. In the UK where 90% of the population is projected to live in urban areas by 2050, projecting changes in urban heat islands in a warming climate is essential to adaptation and urban planning.</p><p>With the use of the new UK Climate Projections (UKCP18) in which urban land use is constant, I will show that both summer urban and sub-urban temperatures are projected to increase in the 10 most populous built-up areas in England between 1980 and 2080. However, differential warming rates in urban and sub-urban areas, and during day and at night suggest a trend towards a reduced daytime urban heat island effect but an enhanced night-time urban heat island effect. These changes in urban heat islands have implications on thermal comfort and local atmospheric circulations that impact the dispersion of air pollutants. I will further demonstrate that the opposite trends in daytime and night-time urban heat island effects are projected to emerge from current variability in more than half of the studied cities below a global mean warming of 3°C above pre-industrial levels.</p>


2021 ◽  
Author(s):  
Kyungil Lee ◽  
Yoonji Kim ◽  
Hyun Chan Sung ◽  
Seung Hee Kim ◽  
Seong Woo Jeon

Abstract Newtown is a planned city built over a short time period. It is suitable for climate and thermal research, particularly formulating urban planning strategies to analyse problems such as urban heat islands (UHIs). Herein, a comprehensive approach was demonstrated for determining changes in UHI distribution during 1989–2048 in two Newtowns with different urban planning. A significant increase in built-up areas was observed from 1989 (< 5%) to 2018 (> 40%) in both Newtowns. However, this increase significantly varied (approximately 12.25%) with urban planning in the areas where UHIs occurred before and after development. Moreover, without effective mitigation, the built-up area in each Newtown is estimated to increase to approximately 60%, and the surface UHI intensity in most areas to increase by 4 °C in 2048. Thus, these results combined with architectural assessment models can improve the understanding of thermal environmental impacts of urbanisation and help mitigate heat island hazards.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Kaufui V. Wong ◽  
Andrew Paddon ◽  
Alfredo Jimenez

Medical and health researchers have shown that fatalities during heat waves are most commonly due to respiratory and cardiovascular diseases, primarily from heat's negative effect on the cardiovascular system. In an attempt to control one's internal temperature, the body’s natural instinct is to circulate large quantities of blood to the skin. However, to perform this protective measure against overheating actually harms the body by inducing extra strain on the heart. This excess strain has the potential to trigger a cardiac event in those with chronic health problems, such as the elderly, Cui et al. Frumkin showed that the relationship of mortality and temperature creates a J-shaped function, showing a steeper slope at higher temperatures. Records show that more casualties have resulted from heat waves than hurricanes, floods, and tornadoes together. This statistic’s significance is that extreme heat events (EHEs) are becoming more frequent, as shown by Stone et al. Their analysis shows a growth trend of EHEs by 0.20 days/year in U.S. cities between 1956 and 2005, with a 95% confidence interval and uncertainty of ±0.6. This means that there were 10 more days of extreme heat conditions in 2005 than in 1956. Studies held from 1989 to 2000 in 50 U.S. cities recorded a rise of 5.7% in mortality during heat waves. The research of Schifano et al. revealed that Rome’s elderly population endures a higher mortality rate during heat waves, at 8% excess for the 65–74 age group and 15% for above 74. Even more staggering is findings of Dousset et al. on French cities during the 2003 heat wave. Small towns saw an average excess mortality rate of 40%, while Paris witnessed an increase of 141%. During this period, a 0.5 °C increase above the average minimum nighttime temperature doubled the risk of death in the elderly. Heat-related illnesses and mortality rates have slightly decreased since 1980, regardless of the increase in temperatures. Statistics from the U.S. Census state that the U.S. population without air conditioning saw a drop of 32% from 1978 to 2005, resting at 15%. Despite the increase in air conditioning use, a study done by Kalkstein through 2007 proved that the shielding effects of air conditioning reached their terminal effect in the mid-1990s. Kan et al. hypothesize in their study of Shanghai that the significant difference in fatalities from the 1998 and 2003 heat waves was due to the increase in use of air conditioning. Protective factors have mitigated the danger of heat on those vulnerable to it, however projecting forward the heat increment related to sprawl may exceed physiologic adaptation thresholds. It has been studied and reported that urban heat islands (UHI) exist in the following world cities and their countries and/or states: Tel-Aviv, Israel, Newark, NJ, Madrid, Spain, London, UK, Athens, Greece, Taipei, Taiwan, San Juan, Puerto Rico, Osaka, Japan, Hong Kong, China, Beijing, China, Pyongyang, North Korea, Bangkok, Thailand, Manila, Philippines, Ho Chi Minh City, Vietnam, Seoul, South Korea, Muscat, Oman, Singapore, Houston, USA, Shanghai, China, Wroclaw, Poland, Mexico City, Mexico, Arkansas, Atlanta, USA, Buenos Aires, Argentina, Kenya, Brisbane, Australia, Moscow, Russia, Los Angeles, USA, Washington, DC, USA, San Diego, USA, New York, USA, Chicago, USA, Budapest, Hungary, Miami, USA, Istanbul, Turkey, Mumbai, India, Shenzen, China, Thessaloniki, Greece, Rotterdam, Netherlands, Akure, Nigeria, Bucharest, Romania, Birmingham, UK, Bangladesh, and Delhi, India. The strongest being Shanghai, Bangkok, Beijing, Tel-Aviv, and Tokyo with UHI intensities (UHII) of 3.5–7.0, 3.0–8.0, 5.5–10, 10, and 12 °C, respectively. Of the above world cities, Hong Kong, Bangkok, Delhi, Bangladesh, London, Kyoto, Osaka, and Berlin have been linked to increased mortality rates due to the heightened temperatures of nonheat wave periods. Chan et al. studied excess mortalities in cities such as Hong Kong, Bangkok, and Delhi, which currently observe mortality increases ranging from 4.1% to 5.8% per 1 °C over a temperature threshold of approximately 29 °C. Goggins et al. found similar data for the urban area of Bangladesh, which showed an increase of 7.5% in mortality for every 1 °C the mean temperature was above a similar threshold. In the same study, while observing microregions of Montreal portraying heat island characteristics, mortality was found to be 28% higher in heat island zones on days with a mean temperature of 26 °C opposed to 20 °C compared to a 13% increase in colder areas.


Author(s):  
Pieter Snyman ◽  
A. Stephen Steyn

Urban heat islands (UHIs) are characterised by warmer urban air temperatures compared to rural air temperatures, and the intensity is equal to the difference between the two. Air temperatures are measured at various sites across the city of Bloemfontein and then analysed to determine the UHI characteristics. The UHI is found to have a horseshoe shape and reaches a maximum intensity of 8.2 °C at 22:00. The UHI is largely affected by the local topography.


1979 ◽  
Vol 89 ◽  
pp. 13-25
Author(s):  
James A. Hughes

The role of urban heat islands in producing systematic isopycnic tilts is explored in more detail, and with greater rigor, than in Part I of this series. (Perth, 1974).Specifically, a three dimensional integration is carried out, and light rays are, in effect, “traced” through the resulting perturbation field by evaluating the integral of anomalous refraction. This is done for various values of the parameters, viz., wind direction and observatory location relative to the heat island, strength of the central perturbation, zenith distance of the observed object, etc.It is stressed that heat islands are not the only source of such systematic effects.Finally, a brief discussion of some possible methods of determining observationally the effects here treated theoretically, as well as other site dependent effects, is appended.


Author(s):  
Tao Chen ◽  
Anchang Sun ◽  
Ruiqing Niu

Man-made materials now cover a dominant proportion of urban areas, and such conditions not only change the absorption of solar radiation, but also the allocation of the solar radiation and cause the surface urban heat island effect, which is considered a serious problem associated with the deterioration of urban environments. Although numerous studies have been performed on surface urban heat islands, only a few have focused on the effect of land cover changes on surface urban heat islands over a long time period. Using six Landsat image scenes of the Metropolitan Development Area of Wuhan, our experiment (1) applied a mapping method for normalized land surface temperatures with three land cover fractions, which were impervious surfaces, non-chlorophyllous vegetation and soil and vegetation fractions, and (2) performed a fitting analysis of fierce change areas in the surface urban heat island intensity based on a time trajectory. Thematic thermal maps were drawn to analyze the distribution of and variations in the surface urban heat island in the study area. A Multiple Endmember Spectral Mixture Analysis was used to extract the land cover fraction information. Then, six ternary triangle contour graphics were drawn based on the land surface temperature and land cover fraction information. A time trajectory was created to summarize the changing characteristics of the surface urban heat island intensity. A fitting analysis was conducted for areas showing fierce changes in the urban heat intensity. Our results revealed that impervious surfaces had the largest impacts on surface urban heat island intensity, followed by the non-chlorophyllous vegetation and soil fraction. Moreover, the results indicated that the vegetation fraction can alleviate the occurrence of surface urban heat islands. These results reveal the impact of the land cover fractions on surface urban heat islands. Urban expansion generates impervious artificial objects that replace pervious natural objects, which causes an increase in land surface temperature and results in a surface urban heat island.


2021 ◽  
Vol 13 (22) ◽  
pp. 4601
Author(s):  
Liang Yan ◽  
Wenxiao Jia ◽  
Shuqing Zhao

Urban green spaces have many vital ecosystem services such as air cleaning, noise reduction, and carbon sequestration. Amid these great benefits from urban green spaces, the cooling effects via shading and evapotranspiration can mitigate the urban heat island effect. The impact of urban green spaces (UGSs) on the urban thermal environment in Beijing was quantified as a case study of metacities using four metrics: Land surface temperature (LST), cooling intensity, cooling extent, and cooling lapse. Three hundred and sixteen urban green spaces were extracted within the 4th ring road of Beijing from SPOT 6 satellite imagery and retrieved LST from Landsat 8 remote sensing data. The results showed that the cooling intensity of green spaces was generally more prominent in the areas with denser human activities and higher LST in this metacity. Vegetation density is always the dominant driver for the cooling effect indicated by all of the metrics. Furthermore, the results showed that those dispersive green spaces smaller than 9 ha, which are closely linked to the health and well-being of citizens, can possess about 6 °C of cooling effect variability, suggesting a great potential of managing the layout of small UGSs. In addition, the water nearby could be introduced to couple with the green and blue space for the promotion of cooling and enhancement of thermal comfort for tourists and residents. As the severe urban heating threatens human health and well-being in metacities, our findings may provide solutions for the mitigation of both the urban heat island and global climate warming of the UGS area customized cooling service.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yuanzheng Li ◽  
Lan Wang ◽  
Min Liu ◽  
Guosong Zhao ◽  
Tian He ◽  
...  

The thermal environment is closely related to human well-being. Determinants of surface urban heat islands (SUHIs) have been extensively studied. Nevertheless, some research fields remain blank or have conflicting findings, which need to be further addressed. Particularly, few studies focus on drivers of SUHIs in massive cities with different sizes under various contexts at large scales. Using multisource data, we explored 11 determinants of surface urban heat island intensity (SUHII) for 1449 cities in different ecological contexts throughout China in 2010, adopting the Spearman and partial correlation analysis and machine learning method. The main results were as follows: (1) Significant positive partial correlations existed between daytime SUHII and the differences in nighttime light intensity and built-up intensity between cities and their corresponding villages except in arid or semiarid western China. The differences in the enhanced vegetation index were generally partially negatively correlated with daytime and nighttime SUHII. The differences in white sky albedo were usually partially negatively correlated with nighttime SUHII. The mean air temperature was partially positively correlated with nighttime SUHII in 40% of cases. Only a few significant partial relationships existed between SUHII and urban area, total population, and differences in aerosol optical depth. The explanation rates during daytime were larger than during nighttime in 72% of cases. The largest and smallest rates occurred during summer days in humid cold northeastern China (63.84%) and in southern China (10.44%), respectively. (2) Both the daytime and nighttime SUHII could be well determined by drivers using the machine learning method. The RMSE ranged from 0.49°C to 1.54°C at a national scale. The simulation SUHII values were always significantly correlated with the actual SUHII values. The simulation accuracies were always higher during nighttime than daytime. The highest accuracies occurred in central-northern China and were lowest in western China during both daytime and nighttime.


2020 ◽  
Vol 12 (20) ◽  
pp. 3345 ◽  
Author(s):  
Daniel Montaner-Fernández ◽  
Luis Morales-Salinas ◽  
José Sobrino Rodriguez ◽  
Luz Cárdenas-Jirón ◽  
Alfredo Huete ◽  
...  

Urban heat islands (UHIs) can present significant risks to human health. Santiago, Chile has around 7 million residents, concentrated in an average density of 480 people/km2. During the last few summer seasons, the highest extreme maximum temperatures in over 100 years have been recorded. Given the projections in temperature increase for this metropolitan region over the next 50 years, the Santiago UHI could have an important impact on the health and stress of the general population. We studied the presence and spatial variability of UHIs in Santiago during the summer seasons from 2005 to 2017 using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery and data from nine meteorological stations. Simple regression models, geographic weighted regression (GWR) models and geostatistical interpolations were used to find nocturnal thermal differences in UHIs of up to 9 °C, as well as increases in the magnitude and extension of the daytime heat island from summer 2014 to 2017. Understanding the behavior of the UHI of Santiago, Chile, is important for urban planners and local decision makers. Additionally, understanding the spatial pattern of the UHI could improve knowledge about how urban areas experience and could mitigate climate change.


2020 ◽  
pp. 91-110 ◽  
Author(s):  
Sarah E. Diamond ◽  
Ryan A. Martin

As humans continue to modify the climatic conditions organisms encounter, downstream effects on the phenotypes of organisms are likely to arise. In particular, the worldwide proliferation of human settlements rapidly generates pockets of localized warming across the landscape. These urban heat island effects are frequently intense, especially for moderate to larger sized cities, where urban centres can be several degrees Celsius warmer compared with nearby non-urban areas. Although organisms likely ameliorate the effects of warming through phenotypic plasticity, the evolution of thermally sensitive traits may be an important yet underappreciated means of survival. Recent work suggests the potential for contemporary evolutionary change in association with urban heat islands across a diverse suite of traits from morphology to physiological tolerance, growth rate, and metabolism. This chapter reviews and synthesizes this work. It first develops a comprehensive set of predictions for adaptive evolutionary changes in morphology, physiology, and life-history traits driven by urban heat islands. It then evaluates these predictions with regard to the burgeoning literature on urban evolution of thermally sensitive traits.


Sign in / Sign up

Export Citation Format

Share Document