scholarly journals A new generation, promising engineering material: Cubic boron nitride (c-BN)

2015 ◽  
Vol 2 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Baris Cetin ◽  
◽  
Hakan Kaplan ◽  
Goksel Durkaya ◽  
◽  
...  
2010 ◽  
Vol 154-155 ◽  
pp. 209-213
Author(s):  
Qian Wang

In order to produce new generation monolayer brazing CBN(cubic boron nitride) grinding wheels, an active filler alloys(Ag-Cu-Ti) were tested in vacuum furnace. The results show that Ag-Cu-Ti alloy exhibits good wetting and bonding toward as CBN grits. SEMEDS microanalyses have shown that during brazing Ti in Ag-Cu-Ti alloy segregated preferentially to the surface of the CBN to form a Ti-rich reaction produce. X-ray diffraction reveals that the wetting and bonding behaviour on CBN surface by Ag-Cu-Ti alloy melt is realized through TiN and TiB2 which is produced by interaction between Ti atoms of Ag-Cu-Ti alloy and N or B atoms of CBN surface.


2013 ◽  
Vol 2 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Ana Lúcia Diegues Skury ◽  
Márcia Giardinieri de Azevedo ◽  
Guerold Sergueevitch Bobrovnitchii

2021 ◽  
pp. 68-71
Author(s):  

The results of testing new generation Aerobor® II cubic boron nitride grinding wheels during machining of the locking element of turbine blades are presented. The advantages of using new high-porosity cubic boron nitride grinding wheels in comparison with abrasive grinding wheels in deep grinding of parts made of heat-resistant nickel alloys are described. Keywords: deep grinding, turbine blade, locking element, high-temperature nickel alloys, high-porosity cubic boron nitride grinding wheel [email protected], [email protected], [email protected]


Author(s):  
D. L. Medlin ◽  
T. A. Friedmann ◽  
P. B. Mirkarimi ◽  
M. J. Mills ◽  
K. F. McCarty

The allotropes of boron nitride include two sp2-bonded phases with hexagonal and rhombohedral structures (hBN and rBN) and two sp3-bonded phases with cubic (zincblende) and hexagonal (wurtzitic) structures (cBN and wBN) (Fig. 1). Although cBN is synthesized in bulk form by conversion of hBN at high temperatures and pressures, low-pressure synthesis of cBN as a thin film is more difficult and succeeds only when the growing film is simultaneously irradiated with a high flux of ions. Only sp2-bonded material, which generally has a disordered, turbostratic microstructure (tBN), will form in the absence of ion-irradiation. The mechanistic role of the irradiation is not well understood, but recent work suggests that ion-induced compressive film stress may induce the transformation to cBN.Typically, BN films are deposited at temperatures less than 1000°C, a regime for which the structure of the sp2-bonded precursor material dictates the phase and microstructure of the material that forms from conventional (bulk) high pressure treatment.


MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1545-1550 ◽  
Author(s):  
Nicholas L. McDougall ◽  
Jim G. Partridge ◽  
Desmond W. M. Lau ◽  
Philipp Reineck ◽  
Brant C. Gibson ◽  
...  

ABSTRACTCubic boron nitride (cBN) is a synthetic wide band gap material that has attracted attention due to its high thermal conductivity, optical transparency and optical emission. In this work, defects in cBN have been investigated using experimental and theoretical X-ray absorption near edge structure (XANES). Vacancy and O substitutional defects were considered, with O substituted at the N site (ON) to be the most energetically favorable. All defects produce unique signatures in either the B or N K-edges and can thus be identified using XANES. The calculations coupled with electron-irradiation / annealing experiments strongly suggest that ON is the dominant defect in irradiated cBN and remains after annealing. This defect is a likely source of optical emission in cBN.


Sign in / Sign up

Export Citation Format

Share Document