scholarly journals Irregular deposition of cell wall polymers resulting from defective cellulose synthase complexes

2009 ◽  
Vol 2 (3) ◽  
pp. 1-4
Author(s):  
Olawole O
2007 ◽  
Vol 19 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Reginaldo A. Festucci-Buselli ◽  
Wagner C. Otoni ◽  
Chandrashekhar P. Joshi

Annually, plants produce about 180 billion tons of cellulose making it the largest reservoir of organic carbon on Earth. Cellulose is a linear homopolymer of beta(1-4)-linked glucose residues. The coordinated synthesis of glucose chains is orchestrated by specific plasma membrane-bound cellulose synthase complexes (CelS). The CelS is postulated to be composed of approximately 36 cellulose synthase (CESA) subunits. The CelS synthesizes 36 glucose chains in close proximity before they are further organized into microfibrils that are further associated with other cell wall polymers. The 36 glucose chains in a microfibril are stabilized by intra- and inter-hydrogen bonding which confer great stability on microfibrils. Several elementary microfibrils come together to form macrofibrils. Many CESA isoforms appear to be involved in the cellulose biosynthetic process and at least three types of CESA isoforms appear to be necessary for the functional organization of CelS in higher plants.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Author(s):  
S. Pramod ◽  
M. Anju ◽  
H. Rajesh ◽  
A. Thulaseedharan ◽  
Karumanchi S. Rao

AbstractPlant growth regulators play a key role in cell wall structure and chemistry of woody plants. Understanding of these regulatory signals is important in advanced research on wood quality improvement in trees. The present study is aimed to investigate the influence of exogenous application of 24-epibrassinolide (EBR) and brassinosteroid inhibitor, brassinazole (BRZ) on wood formation and spatial distribution of cell wall polymers in the xylem tissue of Leucaena leucocephala using light and immuno electron microscopy methods. Brassinazole caused a decrease in cambial activity, xylem differentiation, length and width of fibres, vessel element width and radial extent of xylem suggesting brassinosteroid inhibition has a concomitant impact on cell elongation, expansion and secondary wall deposition. Histochemical studies of 24-epibrassinolide treated plants showed an increase in syringyl lignin content in the xylem cell walls. Fluorescence microscopy and transmission electron microscopy studies revealed the inhomogenous pattern of lignin distribution in the cell corners and middle lamellae region of BRZ treated plants. Immunolocalization studies using LM10 and LM 11 antibodies have shown a drastic change in the micro-distribution pattern of less substituted and highly substituted xylans in the xylem fibres of plants treated with EBR and BRZ. In conclusion, present study demonstrates an important role of brassinosteroid in plant development through regulating xylogenesis and cell wall chemistry in higher plants.


1997 ◽  
Vol 56 ◽  
pp. 406 ◽  
Author(s):  
E.A.F. van Tol ◽  
F.-M. Kong ◽  
R.R. Rippe ◽  
J. Simmons ◽  
P.K. Lund ◽  
...  

2011 ◽  
Vol 5 (S7) ◽  
Author(s):  
Nicky Creux ◽  
Minique De Castro ◽  
Martin Ranik ◽  
Antanas Spokevicius ◽  
Gerd Bossinger ◽  
...  

1993 ◽  
Vol 61 (11) ◽  
pp. 4645-4653 ◽  
Author(s):  
S N Lichtman ◽  
S Bachmann ◽  
S R Munoz ◽  
J H Schwab ◽  
D E Bender ◽  
...  

2019 ◽  
Author(s):  
Anindya Ganguly ◽  
Chuanmei Zhu ◽  
Weizu Chen ◽  
Ram Dixit

ABSTRACTConstruction of the cell wall demands harmonized deposition of cellulose and matrix polysaccharides. Cortical microtubules orient the deposition of cellulose by guiding the trajectory of plasma membrane-embedded cellulose synthase complexes. Vesicles containing matrix polysaccharides are thought to be transported by the FRA1 kinesin to facilitate their secretion along cortical microtubules. The cortical microtubule cytoskeleton thus provides a platform to coordinate the delivery of cellulose and matrix polysaccharides, but the underlying molecular mechanisms remain unknown. Here, we show that the tail region of the FRA1 kinesin physically interacts with CMU proteins which are important for the microtubule-dependent guidance of cellulose synthase complexes. Interaction with CMUs did not affect microtubule binding or motility of the FRA1 kinesin but had an opposing effect on the cortical microtubule localization of CMU1 and CMU2 proteins, thus regulating the lateral stability of cortical microtubules. Phosphorylation of the FRA1 tail region by CKL6 inhibited binding to CMUs and consequently reversed the extent of cortical microtubule decoration by CMU1 and CMU2. Genetic experiments demonstrated the significance of this interaction to the growth and reproduction of Arabidopsis thaliana plants. We propose that modulation of CMU’s microtubule localization by FRA1 provides a mechanism to control the coordinated deposition of cellulose and matrix polysaccharides.


Sign in / Sign up

Export Citation Format

Share Document