scholarly journals FRA1 modulates cortical microtubule localization of CMU proteins

2019 ◽  
Author(s):  
Anindya Ganguly ◽  
Chuanmei Zhu ◽  
Weizu Chen ◽  
Ram Dixit

ABSTRACTConstruction of the cell wall demands harmonized deposition of cellulose and matrix polysaccharides. Cortical microtubules orient the deposition of cellulose by guiding the trajectory of plasma membrane-embedded cellulose synthase complexes. Vesicles containing matrix polysaccharides are thought to be transported by the FRA1 kinesin to facilitate their secretion along cortical microtubules. The cortical microtubule cytoskeleton thus provides a platform to coordinate the delivery of cellulose and matrix polysaccharides, but the underlying molecular mechanisms remain unknown. Here, we show that the tail region of the FRA1 kinesin physically interacts with CMU proteins which are important for the microtubule-dependent guidance of cellulose synthase complexes. Interaction with CMUs did not affect microtubule binding or motility of the FRA1 kinesin but had an opposing effect on the cortical microtubule localization of CMU1 and CMU2 proteins, thus regulating the lateral stability of cortical microtubules. Phosphorylation of the FRA1 tail region by CKL6 inhibited binding to CMUs and consequently reversed the extent of cortical microtubule decoration by CMU1 and CMU2. Genetic experiments demonstrated the significance of this interaction to the growth and reproduction of Arabidopsis thaliana plants. We propose that modulation of CMU’s microtubule localization by FRA1 provides a mechanism to control the coordinated deposition of cellulose and matrix polysaccharides.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


2019 ◽  
Vol 60 (7) ◽  
pp. 1487-1503 ◽  
Author(s):  
Thiel A. Lehman ◽  
Karen A Sanguinet

AbstractPlant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.


Author(s):  
A.R. Hardham ◽  
B.E.S. Gunning

Microtubules in the plant cell cortex are usually aligned parallel to microfibrils of cellulose that are being deposited in the cell wall, and are considered to function in guiding or orienting cellulose synthetase complexes that lie in or on the plasma membrane. The cellulose component is largely responsible for the mechanical reaction of the wall to turgor forces, thereby determining cell size and shape, and therefore the role of the cortical microtubules is a fundamental part of the overall morphogenetic process in plants. It is important to determine the structure of cortical arrays of microtubules and to learn how the cell regulates their development, neither of these aspects having been investigated adequately since the original description likened the microtubules to “hundreds of hoops around the cell”.


2007 ◽  
Vol 104 (39) ◽  
pp. 15572-15577 ◽  
Author(s):  
T. Desprez ◽  
M. Juraniec ◽  
E. F. Crowell ◽  
H. Jouy ◽  
Z. Pochylova ◽  
...  

2019 ◽  
Vol 71 (3) ◽  
pp. 919-933 ◽  
Author(s):  
Hong Cao ◽  
Yi Han ◽  
Jingyi Li ◽  
Meng Ding ◽  
Yu Li ◽  
...  

Abstract The molecular mechanisms underlying seed dormancy and germination are not fully understood. Here, we show that Arabidopsis thaliana SEED DORMANCY 4-LIKE (AtSdr4L) is a novel specific regulator of dormancy and germination. AtSdr4L encodes a protein with an unknown biochemical function that is localized in the nucleus and is expressed specifically in seeds. Loss of function of AtSdr4L results in increased seed dormancy. The germination of freshly harvested seeds of the Atsdr4l mutant is insensitive to gibberellin (GA). After-ripened mutant seeds are hypersensitive to the GA biosynthesis-inhibitor paclobutrazol but show unaltered sensitivity to abscisic acid. Several GA biosynthesis genes and GA-regulated cell wall remodeling genes are down-regulated in the mutant in both dormant and after-ripened seeds. These results suggest that the Atsdr4l mutation causes both decreased GA biosynthesis and reduced responses. In addition, a genetic analysis indicated that AtSdr4L is epistatic to DELAY OF GERMINATION1 (DOG1) for dormancy and acts upstream of RGA-LIKE 2 (RGL2) in the GA pathway. We propose that AtSdr4L regulates seed dormancy and germination by mediating both the DOG1 and GA pathways.


2020 ◽  
Vol 126 (5) ◽  
pp. 807-824
Author(s):  
Liu Wang ◽  
Bret E Hart ◽  
Ghazanfar Abbas Khan ◽  
Edward R Cruz ◽  
Staffan Persson ◽  
...  

Abstract Background Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. Scope Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. Conclusion Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.


Planta ◽  
2006 ◽  
Vol 224 (2) ◽  
pp. 438-448 ◽  
Author(s):  
Iain M. MacKinnon ◽  
Adriana Šturcová ◽  
Keiko Sugimoto-Shirasu ◽  
Isabelle His ◽  
Maureen C. McCann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document