scholarly journals Evaluation of Response Reduction Factor of Irregular Reinforced Concrete Framed Structures

Author(s):  
Divya Brahmavrathan ◽  
C. Arunkumar

Seismic analysis is considered as an important parameter for any structural design. The strength and ductility of frame members in seismic design depends on the response reduction factor. In this paper four symmetrically framed structures are considered of different heights under the critical zone condition. The primary emphases of this work is regarding calculation of response reduction factor values attained from designing RC framed structures. The results are computed by applying non-linear static pushover analysis. SAP-2000 software is used for analyzing the non-linear behaviour of the structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mangeshkumar R. Shendkar ◽  
Denise-Penelope N. Kontoni ◽  
Sasankasekhar Mandal ◽  
Pabitra Ranjan Maiti ◽  
Omid Tavasoli

The seismic evaluation and retrofit of reinforced concrete (RC) structures considering masonry infills is the correct methodology because the infill walls are an essential part of RC structures and increase the stiffness and strength of structures in seismically active areas. A three-dimensional four-storey building with masonry infills has been analyzed with nonlinear static adaptive pushover analysis by using the SeismoStruct software. Two models have been considered in this study: the first model is a full RC-infilled frame and the second model is an open ground storey RC-infilled frame. The infill walls have been modeled as a double strut nonlinear cyclic model. In this study, the “material strain limit approach” is first time used for the seismic evaluation of RC buildings with masonry infills. This method is based on the threshold strain limit of concrete and steel to identify the actual damage scenarios of the structural members of RC structures. The two models of the four-storey RC building have been retrofitted with local and global strengthening techniques (RC-jacketing method and incorporation of infills) as per the requirements of the structure to evaluate their effect on the response reduction factor (R) because the R-factor is an important design tool that shows the level of inelasticity in a structure. A significant increase in the response reduction factor (R) and structural plan density (SPD) has been observed in the case of the open ground storey RC-infilled frame after the retrofit. Thus, this paper aims to present a most effective way for the seismic evaluation and retrofit of any reinforced concrete structure through the material strain limit approach.


2021 ◽  
Vol 16 (1) ◽  
pp. 51-60
Author(s):  
Sandesh Sagar Tripathi ◽  
Kamal Bahadur Thapa

Most of the codal provisions used worldwide for the design of elevated water tanks incorporates the nonlinear response through reduction factor that considers overstrength, ductility and redundancy. The majority of these codes provide a value which incorporates the demand of their geological condition and construction industry. In Nepal, there is lack of own guidelines and codes for the seismic design of elevated water tanks. In the present work, seismic performance of elevated reinforced concrete (RC) Intze type water tank is evaluated and value of the response reduction factor (R) for the design of such tank is determined. In this research work 34 models of elevated reinforced water tank were analyzed using SAP 2000 to evaluate the seismic performance with varying tank filling condition and staging height for 450 cumec and 225 cumec capacity. Based on the results, it is concluded that single value of response reduction factor cannot be justified for all heights and capacity of elevated RC water tank. So, for economical design purpose, estimation of response reduction factor with exact analysis is preferred.


2021 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Mangeshkumar R. Shendkar ◽  
Denise-Penelope N. Kontoni ◽  
Sasankasekhar Mandal ◽  
Pabitra Ranjan Maiti ◽  
Dipendra Gautam

The primary focus of this study is to evaluate the nonlinear response of reinforced concrete (RC) frames with two types of brick infills viz., unreinforced brick masonry infill (URM) and semi-interlocked brick masonry infill (SIM) together with lintel beams, subjected to seismic loads. The seismic response is quantified in terms of response reduction factor and base shear. Infill walls are modeled using double strut nonlinear cyclic element. Nonlinear static adaptive pushover analysis is performed in the finite element program SeismoStruct. The response reduction factor (R) is computed from adaptive pushover analysis and performance for all models is obtained. The results showed that the average R factor of the RC framed structure with semi-interlocked masonry (SIM) is 1.31 times higher than the RC frame with unreinforced masonry (URM) infill. The R value of the bare frame with the lintel beam is found to be less than the corresponding value recommended in the Indian Standard Code. The results obtained in this study highlight that if the impacts of lintel beams and various brick infill scenarios are considered in the RC frames then the R values used for the design of RC frame buildings with infills would be underestimated (i.e., the evaluated R values are greater than the R values used for the design purpose).


2015 ◽  
Vol 8 (1) ◽  
pp. 49-65
Author(s):  
J. J. C. Pituba ◽  
W. M. Pereira Júnior

This work deals with an improvement of an anisotropic damage model in order to analyze reinforced concrete structures submitted to reversal loading. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous media following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. However, the original model is not capable to simulate the influence of the previous damage processes in compression regimes. In order to avoid this problem, some conditions are introduced to simulate the damage unilateral effect. It has noted that the damage model is agreement with to micromechanical theory conditions when dealing to unilateral effect in concrete material. Finally, the proposed model is applied in the analyses of reinforced concrete framed structures submitted to reversal loading. These numerical applications show the good performance of the model and its potentialities to simulate practical problems in structural engineering.


Author(s):  
Akihisa Sugiyama ◽  
Koji Setta ◽  
Yoji Kawamoto ◽  
Koji Hamada ◽  
Hideyuki Morita ◽  
...  

As for thin walled cylindrical liquid storage tanks in nuclear power plants, the current elastic design guideline against seismic loading might result in too conservative component design as compared with elasto-plastic design in general industries. Therefore, it is thought possible to make the design guideline more reasonable by taking dynamic response reduction into account. In this series of study, experiments using scaled models were carried out, and seismic behavior of thin walled cylindrical liquid storage tanks was simulated to investigate energy absorption capacity and seismic resistance of those tanks. In this 3rd report of series of studies, seismic behavior of tanks was simulated to estimate a dynamic response reduction factor. This factor is based on the energy absorption capacity of structures. Through experiments and numerical study, a response reduction factor to design thin walled cylindrical liquid storage tanks has been proposed.


1969 ◽  
Vol 59 (2) ◽  
pp. 631-650
Author(s):  
Safak Z. Uzsoy ◽  
Uğur Ersoy

abstract An attempt is made to analyze the damage caused to reinforced concrete-framed structures in the towns of İzmit and Adapazarı by the Mudurnu Valley earthquake of July 22, 1967. The observed damage shows that elaborate calculations for the design of structures to withstand earthquake forces are of little use unless they are based upon sound concepts, proper details, and are carried out by construction practice of good quality.


Sign in / Sign up

Export Citation Format

Share Document