Optimization of ROS measurement and localization in plant tissues: challenges and solutions v1

Author(s):  
taras.p.pasternak not provided ◽  
Jose Manuel Perez-Perez

During the last decade, there has been a huge interest in understanding the role of reactive oxygen species (ROS) in plant signalling transduction pathways. This understanding requires precise quantification of ROS levels in each cell and each cellular compartment. However, the current methods of ROS detection and measuring are limited. This paper revisits the existing ROS detection methods and discuss general guidelines for applying them to specific cases. Introduction All plants require molecular oxygen for survival (Mittler, 2017). ROS formation naturally occurred during electron transport through all membranes which, in turn, regulate DNA repair systems, cell cycle, phytohormone-dependent signalling and pathogen integration (Huang et al., 2019). In the non-photosynthetic plant tissue, the mitochondrial electron transport system of oxidative phosphorylation is the major site for ROS generation (Dourmap et al., 2020). While in photosynthetic tissue, electron transport between stroma and thylakoid is the primary ROS source (Asada, 2006). On plasma membranes and on endoplasmic reticulum membranes, ROS is mainly produced via NADPH oxidases (Foreman et al., 2003).Cell wall peroxidases are another source of apoplastic ROS (Torres, 2010). In addition, peroxisomes can be considered as the major site of intracellular hydrogen peroxide (H2O2) production (Sandalio et al., 2021). Major ROS produced by cellular processes are superoxide (O2-), H2O2, and hydroxyl radical (∙OH). Superoxide is rapidly converted to H2O2 by superoxide dismutase enzymes (SODs; Cu/Zn-SOD in chloroplasts and cytoplasm, Fe-SOD and Mn-SOD in mitochondria). Hydroxyl radicals are thus generated in the cell wall, plasma membrane, and intracellularly by a range of peroxidases, superoxide dismutases, NADPH oxidases, and transition metal catalysts (Richards et al., 2015). Because of the cellular and biochemical damage caused by oxidative stress (Huang et al., 2019), ROS levels should be precisely controlled in each subcellular compartment and each cell type. ROS are highly reactive molecules rapidly subjected to scavenging or degradation, in processes that are highly sensitive to any environmental change, therefore making ROS extremely unstable and difficult to directly detect. Transferring of the plants to buffers with non-physiological pH can be considered as an abiotic stress factor and it eventually might change endogenous ROS levels (Choudhury et al., 2017). However, many established protocols for ROS measurement (Dunand et al., 2007, Jambunathan, 2010, Rodríguez & Taleisnik, 2012) included the soaking of plant tissues on non-physiological buffers, which might alter steady-state ROS levels. Several methods have been used for ROS localization and they rely on histochemistry, fluorescent dyes, and spectrophotometric measurements (Mittler et al., 2011). Histochemistry Histochemical methods are based on the oxidation of dyes in the presence of ROS, resulting in the production of insoluble precipitates. For example, nitro blue tetrazolium (NBT) chloride reacted with O2- to generate water-insoluble di-formazan, while 3-3-diaminobenzidine (DAB) is oxidized by H2O2 in the presence of peroxidases with formation of a dark-brown precipitate (Jambunathan, 2010). Fluorescent dyes Some chemical dyes became fluorescent after oxidation by ROS, like H2DCFDA, DHE or Amplex red (Ortega-Villasante et al., 2016). These dyes can be used for direct ROS localization. Spectrophotometric methods They allow to quantitatively determine ROS level after tissue homogenization, such as the determination of H2O2 levels with 3,5-dichloro-2-hydroxybenzensulfonic acid (DCHBS)in conjunction with 4-aminoantipyrine (AAP) (Van Gestelen et al., 1998). There methods were summarised in the graphical abstracts. Here we provide several detailed protocols for ROS localization and quantification under physiological conditions, aimed to improve current methods and to minimize artefacts.

2021 ◽  
pp. 0271678X2110041
Author(s):  
Jesse A Stokum ◽  
Bosung Shim ◽  
Weiliang Huang ◽  
Maureen Kane ◽  
Jesse A Smith ◽  
...  

The perivascular astrocyte endfoot is a specialized and diffusion-limited subcellular compartment that fully ensheathes the cerebral vasculature. Despite their ubiquitous presence, a detailed understanding of endfoot physiology remains elusive, in part due to a limited understanding of the proteins that distinguish the endfoot from the greater astrocyte body. Here, we developed a technique to isolate astrocyte endfeet from brain tissue, which was used to study the endfoot proteome in comparison to the astrocyte somata. In our approach, brain microvessels, which retain their endfoot processes, were isolated from mouse brain and dissociated, whereupon endfeet were recovered using an antibody-based column astrocyte isolation kit. Our findings expand the known set of proteins enriched at the endfoot from 10 to 516, which comprised more than 1/5th of the entire detected astrocyte proteome. Numerous critical electron transport chain proteins were expressed only at the endfeet, while enzymes involved in glycogen storage were distributed to the somata, indicating subcellular metabolic compartmentalization. The endfoot proteome also included numerous proteins that, while known to have important contributions to blood-brain barrier function, were not previously known to localize to the endfoot. Our findings highlight the importance of the endfoot and suggest new routes of investigation into endfoot function.


2003 ◽  
Vol 30 (6) ◽  
pp. 577 ◽  
Author(s):  
Alfonso Ros Barceló ◽  
Federico Pomar ◽  
Matías López-Serrano ◽  
Maria Angeles Pedreño

Peroxidases are heme-containing enzymes that catalyse the one-electron oxidation of several substrates at the expense of H2O2. They are probably encoded by a large multigene family in grapevines, and therefore show a high degree of polymorphism. Grapevine peroxidases are glycoproteins of high thermal stability, whose molecular weight usually ranges from 35 to 45 kDa. Their visible spectrum shows absorption bands characteristic of high-spin class III peroxidases. Grapevine peroxidases are capable of accepting a wide range of natural compounds as substrates, such as the cell wall protein extensin, plant growth regulators such as IAA, and phenolics such as benzoic acids, stilbenes, flavonols, cinnamyl alcohols and anthocyanins. They are located in cell walls and vacuoles. These locations are in accordance with their key role in determining the final cell wall architecture, especially regarding lignin deposition and extensin insolubilization, and the turnover of vacuolar phenolic metabolites, a task that also forms part of the molecular program of disease resistance. Although peroxidase is a constitutive enzyme in grapevines, its levels are strongly modulated during plant cell development and in response to both biotic and abiotic environmental factors. To gain an insight into the metabolic regulation of peroxidase, several authors have studied how grapevine peroxidase and H2O2 levels change in response to a changing environment. Nevertheless, the results obtained are not always easy to interpret. Despite such difficulties, the response of the peroxidase–H2O2 system to both UV-C radiation and Trichoderma viride elicitors is worthy of study. Both UV-C and T. viride elicitors induce specific changes in peroxidase isoenzyme / H2O2 levels, which result in specific changes in grapevine physiology and metabolism. In the case of T. viride-elicited grapevine cells, they show a particular mechanism for H2O2 production, in which NADPH oxidase-like activities are apparently not involved. However, they offer a unique system whereby the metabolic regulation of peroxidase by H2O2, with all its cross-talks and downstream signals, may be elegantly dissected.


1977 ◽  
Vol 24 (1) ◽  
pp. 295-310
Author(s):  
D.W. Galbraith ◽  
D.H. Northcote

A procedure for the isolation of plasma membranes from protoplasts of suspension-cultured soybean is described. Protoplasts were prepared by enzymic digestion of the cell wall and the plasma membrane was labelled with radioactive diazotized sulphanilic acid. The membrane systems from broken protoplasts were separated by continuous isopycnic sucrose gradient centrifugation. Radioactivity was localized in a band possessing a buoyant density of 1–14 g ml-1. The activities of NADPH- and NADH-cytochrome c reductase, fumarase, Mg2+-ATPase, IDPase and acid phosphodiesterase in the various regions of the density gradient were determined. A plasma membrane fraction was selected which was relatively uncontaminated with membranes derived from endoplasmic reticulum, tonoplasts and mitochondria. The results indicated that Mg2+-ATPase and possibly acid phosphodiesterase were associated with the plasma membrane.


2019 ◽  
Vol 20 (12) ◽  
pp. 2946 ◽  
Author(s):  
Xiao Han ◽  
Li-Jun Huang ◽  
Dan Feng ◽  
Wenhan Jiang ◽  
Wenzhuo Miu ◽  
...  

Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.


2011 ◽  
Vol 13 (8) ◽  
pp. 973-980 ◽  
Author(s):  
Sungjin Park ◽  
Amy L. Szumlanski ◽  
Fangwei Gu ◽  
Feng Guo ◽  
Erik Nielsen

2015 ◽  
Vol 6 (2) ◽  
pp. 50 ◽  
Author(s):  
Vetoshkina D. V. ◽  
Borisova-Mubarakshina M. M. ◽  
Naydov I. A. ◽  
Kozuleva M. A. ◽  
Ivanov B. N.

In this study we describe the mechanisms of reactive oxygen species (ROS) production in the photosynthetic electron transport chain of higher plants chloroplasts under illumination. We implement an improved method for the measurement of hydrogen peroxide (H2O2) production in lipid phase of photosynthetic membranes of chloroplasts. Total rate of H2O2 production and the production within the thylakoid membrane under operation of photosynthetic electron transport chain is evaluated. Obtained data show that even in the presence of an efficient electron acceptor, methyl viologen, an increase in light intensity leads to an increase in H2O2 production mainly within the thylakoid membranes. The role of H2O2 produced within the photosynthetic biological membrane is discussed.


2018 ◽  
Vol 45 (2) ◽  
pp. 102 ◽  
Author(s):  
Boris N. Ivanov ◽  
Maria M. Borisova-Mubarakshina ◽  
Marina A. Kozuleva

Reduction of O2 molecule to superoxide radical, O2•−, in the photosynthetic electron transport chain is the first step of hydrogen peroxide, H2O2, production in chloroplasts in the light. The mechanisms of O2 reduction by ferredoxin, by the components of the plastoquinone pool, and by the electron transfer cofactors in PSI are analysed. The data indicating that O2•− and H2O2 can be produced both outside and within thylakoid membrane are presented. The H2O2 production in the chloroplast stroma is described as a result of either dismutation of O2•− or its reduction by stromal reductants. Formation of H2O2 within thylakoid membrane in the reaction of O2•− with plastohydroquinone is examined. The significance of both ways of H2O2 formation for specificity of the signal being sent by photosynthetic electron transport chain to cell adaptation systems is discussed.


1997 ◽  
Vol 43 (2) ◽  
pp. 136-142 ◽  
Author(s):  
Martina Celerin ◽  
Alan W. Day ◽  
Ronald J. Smith ◽  
David E. Laudenbach

Fungal fimbriae are long (0.5–20 μm), narrow (7 nm) surface appendages that have been observed on most members of the Mycota. Biochemical analyses have determined that fimbriae from Microbotryum violaceum are composed of 74-kDa glycoproteinaceous subunits in which the protein moiety is fungal collagen. We present evidence for the localization of fimbrial subunits prior to their exportation from the cell. We term these internal, likely nonpolymerized fimbriae "pro-fimbriae" and demonstrate the location of the reserves within the peripheral cytoplasm. Also, we show that fimbriae may not traverse the cell wall as previously believed, but may instead originate from within the outer lamella of the cell wall, possibly being anchored to the cell wall via other molecules. This model is analogous to the animal extracellular matrix arrangement in which collagens are anchored to plasma membranes via other proteins such as fibronectin.Key words: fungus, immunolocalization, fimbriae, Microbotryum, Ustilago.


Sign in / Sign up

Export Citation Format

Share Document