scholarly journals Modification of the Empirical Orthogonal Functions Method for Solving the Inverse Task of Retrieving of the CO2 Total Content from Satellite Data

Author(s):  
Mikhail Yu. Kataev ◽  
◽  
Andrey K. Lukyanov ◽  
Artur A. Bekerov ◽  
◽  
...  
Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2578
Author(s):  
Leonid Kulikov ◽  
Natalia Inkova ◽  
Daria Cherniuk ◽  
Anton Teslyuk ◽  
Zorigto Namsaraev

Satellite research methods are [DCh]actively involvedfrequently used in observations of water bodies. One of the most important problems in satellite observations is the presence of missing data due to internal malfunction of satellite sensors and poor atmospheric conditions. We proceeded on the assumption that the use of data recovery methods based on spatial relationships in data can increase the recovery accuracy. In this paper, we present a method for missing data reconstruction from remote sensors. We refer our method to as Tensor Interpolating Empirical Orthogonal Functions (TIEOF). The method relies on the two-dimensional nature of sensor images and organizes the data into three-dimensional tensors. We use high-order tensor decomposition to interpolate missing data [ZN] on chlorophyll a concentration in lake Baikal (Russia, Siberia). Using MODIS and SeaWiFS satellite data of lake Baikal we show that the observed improvement of TIEOF was 69% on average compared to the current state-of-the-art DINEOF algorithm measured in various preprocessing data scenarios including thresholding and different interpolating schemes.


2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Mengmeng Yang ◽  
Faisal Ahmed Khan ◽  
Hongzhen Tian ◽  
Qinping Liu

Missing spatial data is one of the major concerns associated with the application of satellite data. The Data INterpolating Empirical Orthogonal Functions (DINEOF) method has been proven to be an effective tool for filling spatial gaps in various satellite data products. The Ariake Sea, which is a turbid coastal sea, shows the large spatial and temporal variability of chlorophyll-a (Chl-a) and total suspended matter (TSM). However, ocean color satellite data for this region usually have large gaps, which affects the accurate analysis of Chl-a and TSM variability. In this study, we applied the DINEOF method to fill the missing pixels from the regionally tuned Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua (hereafter, MODIS) Chl-a and MODIS-derived TSM datasets for the period 2002–2017. The validation results showed that the DINEOF reconstructed data were accurate and reliable. Furthermore, the Empirical Orthogonal Functions (EOF) analysis based on the reconstructed data was used to quantitatively analyze the spatial and temporal variability of Chl-a and TSM at both monthly and individual events of spring-neap tidal scales. The first three EOF modes of Chl-a showed seasonal variability mainly caused by precipitation, the sea surface temperature (SST), and river discharge for the first EOF mode and the sea level amplitude for the second. The first three EOF modes of TSM exhibited both seasonal and spring-neap tidal variability. The first and second EOF modes of TSM displayed spring-neap tidal variability caused by the sea level amplitude. The second EOF mode of TSM also showed seasonal variability caused by the sea level amplitude. In this study, we first applied the DINEOF method to reconstruct the satellite data and to capture the major spatial and temporal variability of Chl-a and TSM for the Ariake Sea. Our results demonstrate that the DINEOF method can reconstruct patchy oceanic color datasets and improve spatio-temporal variability analysis.


Author(s):  
Huug van den Dool

This clear and accessible text describes the methods underlying short-term climate prediction at time scales of 2 weeks to a year. Although a difficult range to forecast accurately, there have been several important advances in the last ten years, most notably in understanding ocean-atmosphere interaction (El Nino for example), the release of global coverage data sets, and in prediction methods themselves. With an emphasis on the empirical approach, the text covers in detail empirical wave propagation, teleconnections, empirical orthogonal functions, and constructed analogue. It also provides a detailed description of nearly all methods used operationally in long-lead seasonal forecasts, with new examples and illustrations. The challenges of making a real time forecast are discussed, including protocol, format, and perceptions about users. Based where possible on global data sets, illustrations are not limited to the Northern Hemisphere, but include several examples from the Southern Hemisphere.


2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Harika Munagapati ◽  
Virendra M. Tiwari

The nature of hydrological seasonality over the Himalayan Glaciated Region (HGR) is complex due to varied precipitation patterns. The present study attempts to exemplify the spatio-temporal variation of hydrological mass over the HGR using time-variable gravity from the Gravity Recovery and Climate Experiment (GRACE) satellite for the period of 2002–2016 on seasonal and interannual timescales. The mass signal derived from GRACE data is decomposed using empirical orthogonal functions (EOFs), allowing us to identify the three broad divisions of HGR, i.e., western, central, and eastern, based on the seasonal mass gain or loss that corresponds to prevailing climatic changes. Further, causative relationships between climatic variables and the EOF decomposed signals are explored using the Granger causality algorithm. It appears that a causal relationship exists between total precipitation and total water storage from GRACE. EOF modes also indicate certain regional anomalies such as the Karakoram mass gain, which represents ongoing snow accumulation. Our causality result suggests that the excessive snowfall in 2005–2008 has initiated this mass gain. However, as our results indicate, despite the dampening of snowfall rates after 2008, mass has been steadily increasing in the Karakorum, which is attributed to the flattening of the temperature anomaly curve and subsequent lower melting after 2008.


Author(s):  
Gudmund Kleiven

The Empirical Orthogonal Functions (EOF) technique has widely being used by oceanographers and meteorologists, while the Singular Value Decomposition (SVD being a related technique is frequently used in the statistics community. Another related technique called Principal Component Analysis (PCA) is observed being used for instance in pattern recognition. The predominant applications of these techniques are data compression of multivariate data sets which also facilitates subsequent statistical analysis of such data sets. Within Ocean Engineering the EOF technique is not yet widely in use, although there are several areas where multivariate data sets occur and where the EOF technique could represent a supplementary analysis technique. Examples are oceanographic data, in particular current data. Furthermore data sets of model- or full-scale data of loads and responses of slender bodies, such as pipelines and risers are relevant examples. One attractive property of the EOF technique is that it does not require any a priori information on the physical system by which the data is generated. In the present paper a description of the EOF technique is given. Thereafter an example on use of the EOF technique is presented. The example is analysis of response data from a model test of a pipeline in a long free span exposed to current. The model test program was carried out in order to identify the occurrence of multi-mode vibrations and vibration mode amplitudes. In the present example the EOF technique demonstrates the capability of identifying predominant vibration modes of inline as well as cross-flow vibrations. Vibration mode shapes together with mode amplitudes and frequencies are also estimated. Although the present example is not sufficient for concluding on the applicability of the EOF technique on a general basis, the results of the present example demonstrate some of the potential of the technique.


Sign in / Sign up

Export Citation Format

Share Document