scholarly journals Spatio-Temporal Patterns of Mass Changes in Himalayan Glaciated Region from EOF Analyses of GRACE Data

2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Harika Munagapati ◽  
Virendra M. Tiwari

The nature of hydrological seasonality over the Himalayan Glaciated Region (HGR) is complex due to varied precipitation patterns. The present study attempts to exemplify the spatio-temporal variation of hydrological mass over the HGR using time-variable gravity from the Gravity Recovery and Climate Experiment (GRACE) satellite for the period of 2002–2016 on seasonal and interannual timescales. The mass signal derived from GRACE data is decomposed using empirical orthogonal functions (EOFs), allowing us to identify the three broad divisions of HGR, i.e., western, central, and eastern, based on the seasonal mass gain or loss that corresponds to prevailing climatic changes. Further, causative relationships between climatic variables and the EOF decomposed signals are explored using the Granger causality algorithm. It appears that a causal relationship exists between total precipitation and total water storage from GRACE. EOF modes also indicate certain regional anomalies such as the Karakoram mass gain, which represents ongoing snow accumulation. Our causality result suggests that the excessive snowfall in 2005–2008 has initiated this mass gain. However, as our results indicate, despite the dampening of snowfall rates after 2008, mass has been steadily increasing in the Karakorum, which is attributed to the flattening of the temperature anomaly curve and subsequent lower melting after 2008.

2010 ◽  
Vol 27 (8) ◽  
pp. 1395-1402 ◽  
Author(s):  
Don P. Chambers ◽  
Josh K. Willis

Abstract Ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) and the Ocean Model for Circulation and Tides (OMCT) are compared globally with OBP computed from altimetry corrected for steric variations from Argo floats from January 2005 to December 2007. Two methods of smoothing the GRACE data are examined. The first uses a standard Gaussian smoother with a radius of 300 km. The second method projects those smoothed maps onto empirical orthogonal functions derived from OMCT in a least squares estimation in order to produce maps that better agree with the physical processes embodied by the model. These new maps agree significantly better with estimates from the steric-corrected altimetry, reducing the variance on average by 30% over 70% of the ocean. This is compared to smaller reductions over only 14% of the ocean using the 300-km Gaussian maps and 56% of the ocean using OMCT maps. The OMCT maps do not reduce variance as much in the Southern Ocean where OBP variations are largest, whereas the GRACE maps do. Based on this analysis, it is estimated that the local, or point-to-point, uncertainty of new EOF filtered maps of GRACE OBP is 1.3 (one standard deviation).


2021 ◽  
Author(s):  
Nico Sneeuw ◽  
Bramha Dutt Vishwakarma ◽  
Jinwei Zhang

<p>The satellite missions Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow-On record the change in the gravity field, which is then related to water mass redistribution near the Earth's surface and disseminated as monthly fields of Total Water Storage Change (TWSC). GRACE products effectively carry signal information only above spatial scales of about 300 km, which limits their application in regional hydrological applications. At present, several GRACE products are available at 0.5° or 1° grid cells, but they are only an interpolated version of the coarse resolution GRACE products and do not offer additional physical information. </p><p>In this study we implement a statistical downscaling approach that assimilates high resolution TWSC fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, evapotranspiration and runoff from 2 models, with GRACE data to improve its resolution. The downscaled product exploits dominant common statistical modes between all the datasets to inform the estimates of TWSC. An improvement in the spatial resolution is obtained from using WGHM that incorporates the geometry of various water compartments and simulates spatio-temporal changes in TWSC due to climate forcing, land use land cover change, and human intervention. Therefore, the downscaled product at a 0.5° grid is able to capture physical attributes of water compartments at a spatial resolution better than the available GRACE products. </p>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Jiang ◽  
Jianhua Wang ◽  
Yaohuan Huang ◽  
Kang Zhou ◽  
Xiangyi Ding ◽  
...  

The Gravity Recovery and Climate Experiment (GRACE) satellite provides a new method for terrestrial hydrology research, which can be used for improving the monitoring result of the spatial and temporal changes of water cycle at large scale quickly. The paper presents a review of recent applications of GRACE data in terrestrial hydrology monitoring. Firstly, the scientific GRACE dataset is briefly introduced. Recently main applications of GRACE data in terrestrial hydrological monitoring at large scale, including terrestrial water storage change evaluation, hydrological components of groundwater and evapotranspiration (ET) retrieving, droughts analysis, and glacier response of global change, are described. Both advantages and limitations of GRACE data applications are then discussed. Recommendations for further research of the terrestrial water monitoring based on GRACE data are also proposed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bramha Dutt Vishwakarma ◽  
Jinwei Zhang ◽  
Nico Sneeuw

AbstractThe Gravity Recovery And Climate Experiment (GRACE) satellite mission recorded temporal variations in the Earth’s gravity field, which are then converted to Total Water Storage Change (TWSC) fields representing an anomaly in the water mass stored in all three physical states, on and below the surface of the Earth. GRACE provided a first global observational record of water mass redistribution at spatial scales greater than 63000 km2. This limits their usability in regional hydrological applications. In this study, we implement a statistical downscaling approach that assimilates 0.5° × 0.5° water storage fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, evapotranspiration and runoff from 2 models, with GRACE data to obtain TWSC at a 0.5° × 0.5° grid. The downscaled product exploits dominant common statistical modes between all the hydrological datasets to improve the spatial resolution of GRACE. We also provide open access to scripts that researchers can use to produce downscaled TWSC fields with input observations and models of their own choice.


2021 ◽  
Vol 13 (20) ◽  
pp. 4082
Author(s):  
Manhong Tu ◽  
Weixing Zhang ◽  
Jingna Bai ◽  
Di Wu ◽  
Hong Liang ◽  
...  

GPS data during Typhoon Lekima at 700 stations in China were processed by the Precise Point Positioning (PPP) method. A refined regional Tm model was used to derive the precipitable water vapor (PWV) at these GPS stations. Spatio-temporal variations of PWV with the typhoon process were analyzed. As the typhoon approached, PWV at stations near the typhoon center increased sharply from about 50 mm to nearly 80 mm and then dropped back to about 40–50 mm as the typhoon left. Comparisons of GPS, radiosonde, the Global Data Assimilation System (GDAS) Global Forecast System (GFS) analysis products and ERA5 reanalysis products at four matched GPS-RS stations show overall overestimations of PWV from radiosonde, GFS and ERA5 compared with GPS in a statistical perspective. An empirical orthogonal functions (EOF) analysis of the PWV during the typhoon event revealed some different patterns of variability, with both the first EOF (~36.1% of variance) and second EOF (~30.3% of variance) showing distinctively large anomalies over the typhoon landing locations. The typhoon caused a large horizontal tropospheric gradient (HTG) with the magnitude reaching 5 mm and the direction pointing to the typhoon center when it made a landfall on mainland China. The magnitude and the consistency of the HTG direction decreased overall as the typhoon weakened.


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Total water storage (TWS) is obtained by the gravity recovery and climate experiment (GRACE) satellite by measuring surface density changes. TWS provides valuable information about the water cycle on Earth and can play a useful role in water resource management studies. In this study, TWS of GRACE- Follow-On (FO) satellite from 2018 to 2020 has been studied. The western and central regions of Iran are in a better situation than other regions. Northwest, North, Northeast areas have a decreasing TWS trend of more than 5 cm. The western regions of Iran show an increasing trend and its value is about 3 cm. The southern regions of Iran have an almost constant annual TWS trend. TWS 2020 is similar to 2019.


Sign in / Sign up

Export Citation Format

Share Document