scholarly journals Optimizing household energy planning in smart cities: A multiobjective approach

Author(s):  
Sergio Nesmachnow ◽  
Giovanni Colacurcio ◽  
Diego Gabriel Rossit ◽  
Jamal Toutouh ◽  
Francisco Luna

This article presents the advances in the design and implementation of a recommendation system for planning the use of household appliances, focused on improving energy efficiency from the point of view of both energy companies and end-users. The system proposes using historical information and data from sensors to define instances of the planning problem considering user preferences, which in turn are proposed to be solved using a multiobjective evolutionary approach, in order to minimize energy consumption and maximize quality of service offered to users. Promising results are reported on realistic instances of the problem, compared with situations where no intelligent energy planning are used (i.e., ‘Bussiness as Usual’ model) and also with a greedy algorithm developed in the framework of the reference project. The proposed evolutionary approach was able to improve up to 29.0% in energy utilization and up to 65.3% in user preferences over the reference methods.

2021 ◽  
Vol 12 (4) ◽  
pp. 365-380 ◽  
Author(s):  
Sergio Nesmachnow ◽  
Diego Gabriel Rossit ◽  
Jamal Toutouh ◽  
Francisco Luna

Modern Smart Cities are highly dependent on an efficient energy service since electricity is used in an increasing number of urban activities. In this regard, Time-of-Use prices for electricity is a widely implemented policy that has been successful to balance electricity consumption along the day and, thus, diminish the stress and risk of shortcuts of electric grids in peak hours. Indeed, residential customers may now schedule the use of deferrable electrical appliances in their smart homes in off-peak hours to reduce the electricity bill. In this context, this work aims to develop an automatic planning tool that accounts for minimizing the electricity costs and enhancing user satisfaction, allowing them to make more efficient usage of the energy consumed. The household energy consumption planning problem is addressed with a multiobjective evolutionary algorithm, for which problem-specific operators are devised, and a set of state-of-the-art greedy algorithms aim to optimize different criteria. The proposed resolution algorithms are tested over a set of realistic instances built using real-world energy consumption data, Time-of-Use prices from an electricity company, and user preferences estimated from historical information and sensor data. The results show that the evolutionary algorithm is able to improve upon the greedy algorithms both in terms of the electricity costs and user satisfaction and largely outperforms to a large extent the current strategy without planning implemented by users.


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 177-191
Author(s):  
Theodoros Anagnostopoulos

Smart Cities (or Cities 2.0) are an evolution in citizen habitation. In such cities, transport commuting is changing rapidly with the proliferation of contemporary vehicular technology. New models of vehicle ride sharing systems are changing the way citizens commute in their daily movement schedule. The use of a private vehicle per single passenger transportation is no longer viable in sustainable Smart Cities (SC) because of the vehicles’ resource allocation and urban pollution. The current research on car ride sharing systems is widely expanding in a range of contemporary technologies, however, without covering a multidisciplinary approach. In this paper, the focus is on performing a multidisciplinary research on car riding systems taking into consideration personalized user mobility behavior by providing next destination prediction as well as a recommender system based on riders’ personalized information. Specifically, it proposes a predictive vehicle ride sharing system for commuting, which has impact on the SC green ecosystem. The adopted system also provides a recommendation to citizens to select the persons they would like to commute with. An Artificial Intelligence (AI)-enabled weighted pattern matching model is used to assess user movement behavior in SC and provide the best predicted recommendation list of commuting users. Citizens are then able to engage a current trip to next destination with the more suitable user provided by the list. An experimented is conducted with real data from the municipality of New Philadelphia, in SC of Athens, Greece, to implement the proposed system and observe certain user movement behavior. The results are promising for the incorporation of the adopted system to other SCs.


2020 ◽  
Vol 2 (95) ◽  
pp. 21-27
Author(s):  
S. F. Chalyi ◽  
V. O. Leshchynskyi

The problem of taking into account changes in the user’s behavior of the recommendation system whenconstructing explanations for recommendations is considered. This problem occurs as a result of cyclical changes in userrequirements. Its solution is associated with the construction of an explanation comparing the alternative choices of theuser of the recommendation system. The developed models of temporal patterns consist of a set of temporal relationshipsbetween the events of users’ choice of goods and services. The first pattern contains an alternative in the form of sequential selection in time of several objects or the selection of only a pair - the first and the last object. The second pattern,sequential-alternative choice, consists of a sequence of choices over time, which ends with the first pattern. The proposedapproach to the formation of patterns is based on the construction of data sets containing temporal dependencies betweena group of user choices for a given level of time detail. The temporal dataset is used to construct a temporal graph of therecommender system user selection process. The latter includes a set of temporal patterns with an indication of the timeof their beginning and end, which makes it possible to determine the duration of the implementation of these patterns.On the basis of the patterns, subsets of temporal relationships are formed to build explanations for the recommendedlist of goods and services. Experimental verification of the developed approach using the “Online Retail” sales data sethas shown the possibility of identifying temporal patterns even on short initial samples.


Author(s):  
S. Ranjith ◽  
P. Victer Paul

Data mining is an important field that derives insights from the data and recommendation systems. Recommendation systems have become common in recent years in the field of tourism. These are widely used as a tool that can input various selection criteria and user preferences and yields travel recommendations to tourists. User's style and preferences should be constructed accurately so as to supply most relevant suggestions. Researchers proposed various types of tourism recommendation systems (TRS) in order to improve the accuracy and user satisfaction. In this chapter, the authors studied the current state of tourism recommendation system models and discussed their preference criteria. As a part of that, the authors studied various important preference factors in TRS and categorized them based on their likeness. This chapter reports TRS model future directions and compiles a comprehensive reference list to assist researchers.


Sign in / Sign up

Export Citation Format

Share Document