scholarly journals Cytotoxic Effects of Organotin(IV) Dithiocarbamate Compounds with Different Functional Groups on Leukemic Cell Line, K-562

2020 ◽  
Vol 49 (6) ◽  
pp. 1421-1430
Author(s):  
Asmah Hamid ◽  
Mohd Azam Azmi ◽  
Nor Fadilah Rajab ◽  
Normah Awang ◽  
Nurul Farhana Jufri
1997 ◽  
Vol 235 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Sylvette Ayala-Torres ◽  
Peter C. Moller ◽  
Betty H. Johnson ◽  
E.Brad Thompson

Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 524-532 ◽  
Author(s):  
RA Zeff ◽  
YF Zhao ◽  
R Tatake ◽  
H Lachman ◽  
F Borriello ◽  
...  

Abstract Numerous tumor cell lines of leukemic origin are known to modulate cell surface expression of major histocompatibility complex (MHC) class I antigens resulting in alterations in their immune detection and tumorigenicity. We have been studying the mechanisms responsible for attenuation of MHC class I gene expression in an H-2 heterozygous (H-2b x H-2d) Abelson-Murine leukemia virus (A-MuLV)-transformed leukemic cell line (designated R8). Here we report that treatment of the R8 cell line with the protein synthesis inhibitor cycloheximide (CHX) increased H-2Kb steady-state messenger RNA (mRNA) levels several fold. The induced H-2Kb mRNA transcripts were functional, as demonstrated by their ability to be translated into immunoprecipitable H-2Kb alloantigen. H-2Kb null variants derived from the R8 cell line were shown to be the product of both cis- and trans-acting mechanisms, insomuch as the treatment of R8-derived H-2Kb non-expressor lines with CHX re-established expression of H-2Kb mRNA to the same extent as transfection of the variant cell line with the wild-type H-2Kb gene. Such findings indicate that downregulation of MHC class I gene expression is constitutive for the R8 leukemic cell line, a phenomenon that may be related to the immature pre-B-cell phenotype of this A-MuLV transformant.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e85046 ◽  
Author(s):  
Lakshna Mahajan ◽  
Hrishikesh Pandit ◽  
Taruna Madan ◽  
Poonam Gautam ◽  
Ajit K. Yadav ◽  
...  

Author(s):  
Ling Zhang ◽  
Song Yang ◽  
Yu-Juan He ◽  
Hui-Yuan Shao ◽  
Li Wang ◽  
...  

Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 471-478
Author(s):  
Y Imai ◽  
N Nara ◽  
S Tohda ◽  
K Nagata ◽  
T Suzuki ◽  
...  

The effect of recombinant human interleukin-4 (IL-4) on a granulocyte colony-stimulating factor (G-CSF)-dependent human myeloblastic leukemic cell line, OCI-AML1a, was investigated. IL-4 suppressed the clonogenic cell growth in methylcellulose culture, inhibited the uptake of 3H thymidine in a dose-dependent manner at 5 to 100 U/mL, and consequently suppressed the growth of clonogenic cells in short- and long-term suspension cultures. In addition, IL-4 markedly increased the number of adherent cells. These adherent cells were alpha-naphthyl-butyrate (alpha-NB) esterase-positive and showed macrophage-like appearance, increased expression of CD14, CD11b, CD23, and Ia, and significantly decreased clonogenicity. On the other hand, nonadherent cells growing in suspension showed only slight increase in proportion of alpha-NB esterase-positive or monocyte/macrophage-like cells and increased CD23 expression by an addition of IL-4. The clonogenicity of the nonadherent cells was not significantly influenced by IL-4. By addition of the media conditioned by OCI-AML1a cells in the presence of IL-4, the clonogenic cells growth of OCIAML1a cells was suppressed and adherent cells were markedly increased. The suppressive and differentiative effects on OCI/AML1a cells of the conditioned media and IL-4 itself were almost completely abolished by anti-IL-4 antibody. Furthermore, the neutralizing antibodies against transforming growth factor-beta 2 (TGF-beta 2), tumor necrosis factor-alpha (TNF-alpha), or IL-6 did not influence the effect of recombinant IL-4. Taken together, IL-4 was shown to suppress the growth and induce differentiation toward adherent macrophage-like cells of the G-CSF-dependent myeloblastic cell line. The effect of IL-4 may be direct, and not secondary via inducing production of other cytokines such as TGF-beta, TNF-alpha, or IL-6 by leukemic cells.


Sign in / Sign up

Export Citation Format

Share Document