scholarly journals Synthesis, Molecular Docking and Tyrosinase Inhibitory Activity of the Decorated Methoxy Sulfonamide Chalcones: in vitro Inhibitory Effects and the Possible Binding Mode

2021 ◽  
Vol 50 (9) ◽  
pp. 2603-2614
Author(s):  
Thawanrat Kobkeatthawin ◽  
Suchada Chantrapromma ◽  
Thitipone Suwunwong ◽  
Lydia Rhyman ◽  
Yee Siew Choong ◽  
...  

In this study, a series of sulfonamide chalcones derivatives was synthesized and its chemical structures were confirmed by spectral characteristics. The synthesized compounds were evaluated for their tyrosinase inhibitory activities along with molecular docking study. The tyrosinase inhibitory results indicated that compounds 5b, 5c, 5f, 5g and 5h displayed the significant tyrosinase inhibitory activity and comparable to the standard drug (kojic acid). Compound 5c exhibits the most potent tyrosinase inhibition among the synthesized compounds with IC50 = 0.43±0.07 mM, L-DOPA as the substrate, and better than that of the standard kojic acid (IC50 = 0.60±0.20 mM). Molecular docking studies showed that the binding mode of some compounds is in the tyrosinase binding pocket surrounding the copper in the active site. The correlation between the docking results with IC50 values showed that the binding mode prediction of the test compounds would also be convincing. This comprehensive study allows for a possible mechanism for the antityrosinase activity of the sulfonamide chalcones. These sulfonamide chalcones bind to copper atoms of tyrosinase which responsible for the catalytic activity of tyrosinase. These compounds may be used as a lead for rational drug designing for the multi-functional tyrosinase inhibitor.

2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


2020 ◽  
Author(s):  
sabri ahmed cherrak ◽  
merzouk hafida ◽  
mokhtari soulimane nassima

A novel (COVID-19) responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, testing existing drugs as inhibitors of the main COVID-19 protease is a good approach.Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules.The flavonoids chemical structures were downloaded from PubChem and protease structure 6lu7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the covid-19 protease and could be further investigated by in vitro and in vivo experiments for further validation.


2020 ◽  
Vol 17 (10) ◽  
pp. 1216-1226
Author(s):  
Mohammed Hussen Bule ◽  
Roghaieh Esfandyari ◽  
Tadesse Bekele Tafesse ◽  
Mohsen Amini ◽  
Mohammad Ali Faramarzi ◽  
...  

Background: α-Glucosidase inhibitors hinder the carbohydrate digestion and play an important role in the treatment of diabetes mellitus. α-glucosidase inhibitors available on the market are acarbose, miglitol, and voglibose. However, the use of acarbose is diminishing due to related side effects like diarrhea, bloating and abdominal distension. Objectives: This study aimed to synthesize 2,4,6-triaryl pyrimidines derivatives, screen their α- glucosidase inhibitory activity, perform kinetic and molecular docking studies. Methods: A series of 2,4,6-triaryl pyrimidine derivatives were synthesized and their α-glucosidase inhibitory activity was screened in vitro. Pyrimidine derivatives 4a-m were synthesized via a twostep reaction with a yield between 49 and 93%. The structure of the synthesized compounds was confirmed by different spectroscopic techniques (IR, NMR and MS). The in vitro α-glucosidase inhibition activities of the synthesized compounds 4a-m was also evaluated against Saccharomyces cerevisiae α-glucosidase. Results and Discussion: The majority of synthesized compounds had α-glucosidase inhibitory activity. Particularly compounds 4b and 4g were the most active compounds with an IC50 value of 125.2± 7.2 and 139.8 ± 8.1 μM respectively. The kinetic study performed for the most active compound 4b revealed that the compound was a competitive inhibitor of Saccharomyces cerevisiae α-glucosidase with Ki of 122 μM. The molecular docking study also revealed that the two compounds have important binding interactions with the enzyme active site. Conclusion: 2,4,6-triarylpyrimidine derivative 4a-m were synthesized and screened for α- glucosidase inhibitory activity. Most of the synthesized compounds possess α-glucosidase inhibitory activity, and compound 4b demonstrated the most significant inhibitory action as compared to acarbose.


2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


Author(s):  
Muhammad Taha ◽  
Fazal Rahim ◽  
Shawkat Hayat ◽  
Manikandan Selvaraj ◽  
Rai Khalid Farooq ◽  
...  

In the search of potent α-amylase inhibitors, we have synthesized seventeen derivatives of 2-mercaptobenzimidazole bearing sulfonamide (1-17) and evaluated for their α-amylase inhibitory potential. All compounds display a variable degree of α-amylase activity having IC50 values ranging between 0.90 ± 0.05 to 11.20 ± 0.30 µM when compared with the standard drug acarbose having IC50 value 1.70 ± 0.10 µM. Compound 1, 2, 11, 12 and 14 having IC50 values 1.40 ± 0.10, 1.30 ± 0.05, 0.90 ± 0.05, 1.60 ± 0.05 and 1.60 ± 0.10 µM respectively were found many folds better than the standard drug acarbose. The remaining analogs showed good inhibitory potentials. All the synthesized compounds were characterized by HREI-MS, 1H and 13C-NMR. Structure activity relationship (SAR) has been recognized for all newly synthesized analogs. Through molecular docking study, binding mode of active analogs with α-amylase enzyme was confirmed.


2016 ◽  
Vol 16 (1) ◽  
pp. 18 ◽  
Author(s):  
Vidyalakshmi Subramanian ◽  
Dhamodharan Sahithya

Tyrosinase inhibition is an important approach towards controlling hyper pigmentation. We aimed to screen alcoholic extracts of 11 plants extract for their tyrosinase inhibitory activity. These plants have been used traditionally in the treatment of skin ailments and for the improvement of skin complexion. The extracts were quantified for total phenols, alkaloids and tannins. <em>In vitro</em> tyrosinase inhibition was performed with kojic acid as the positive control. Cell viability was tested on B16 F0 melanoma cells. The extracts of <em>Rosa berberifolia</em>, <em>Punica granatum</em> and <em>Casiia angustifolia</em> showed more than 80% inhibition at 500 mg/ml concentration. Nine of the extracts were also shown to have a high phenolic content greater than 200 mg/g of the plant material. The tyrosinase inhibitory activity of the extracts of <em>Cassia angustifolia, Punica granatum </em>and<em> Rosa berberifolia</em> were comparable with that of the control, kojic acid. The three extracts also showed lesser than 50% cytotoxicity at the concentrations tested. From the screening assays, it is seen that three plants have appreciable tyrosinase inhibitory activity. Hence, these plants may be further evaluated for their use in cosmetics and hyper pigmentation.


2021 ◽  
Vol 14 (2) ◽  
pp. 144
Author(s):  
Ahmed A. E. Mourad ◽  
Ahmed E. Khodir ◽  
Sameh Saber ◽  
Mai A. E. Mourad

Background: Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as anti-hyperglycemic agents that improve glycemic control in type 2 diabetic patients, either as monotherapy or in combination with other antidiabetic drugs. Methods: A novel series of dihydropyrimidine phthalimide hybrids was synthesized and evaluated for their in vitro and in vivo DPP-4 inhibition activity and selectivity using alogliptin as reference. Oral glucose tolerance test was assessed in type 2 diabetic rats after chronic treatment with the synthesized hybrids ± metformin. Cytotoxicity and antioxidant assays were performed. Additionally, molecular docking study with DPP-4 and structure activity relationship of the novel hybrids were also studied. Results: Among the synthesized hybrids, 10g, 10i, 10e, 10d and 10b had stronger in vitro DPP-4 inhibitory activity than alogliptin. Moreover, an in vivo DPP-4 inhibition assay revealed that 10g and 10i have the strongest and the most extended blood DPP-4 inhibitory activity compared to alogliptin. In type 2 diabetic rats, hybrids 10g, 10i and 10e exhibited better glycemic control than alogliptin, an effect that further supported by metformin combination. Finally, 10j, 10e, 10h and 10d had the highest radical scavenging activity in DPPH assay. Conclusions: Hybrids 10g, 10i and 10e are potent DPP-4 inhibitors which may be beneficial for T2DM treatment.


2020 ◽  
Vol 72 (4) ◽  
pp. 65-74
Author(s):  
Mou-Cui Li ◽  
Ying-Hui Ren ◽  
Yu-Ying Han ◽  
Yang-Ming Dong ◽  
Shao-Jie Wu ◽  
...  

Seven 4-amino-5-substituted-1,2,4-triazole-3-thione Schiff base compounds were synthesized reacting 4-amino-5-substituted-1,2,4-triazole-3-thione with dichloro-substituted 5-pyrimidines, and the structures were verified by elemental analysis and spectroscopic techniques (FT-IR, 1H NMR). Additionally, in vitro antifungal activities of the compounds (named F1~F2; A1~A5) against Grape anthracnose and Wheat gibberellic have been evaluated. The compounds of F1, A4 and A5 were found to be potentially effective antifungal agents against Grape anthracnose, while the others showed the low bioactivity. The antifungal activity of all compounds against Wheat gibberellic were superior to that of fluconazole (standard drug, SD). Particularly, compounds of F1, A1, A4 and A5 exhibited a broad-spectrum antifungal activity against two fungus as compared to the others. Therefore, molecular docking study was carried out to explore the potential interaction between ligands and Fusarium graminearum (PDB ID: 5E9H). The results showed that four compounds had higher affinity compared with fluconazole and form the stable complex with the receptor. Besides, the frontier molecular orbitals (FMOs) and molecular electrostatic potentials (MEP) of four compounds with broad-spectrum antimicrobial activity were also calculated with DFT/ B3LYP /6-31G (d, p) method. The energy gap values (△ELUMO-HOMO) of all the synthesized compounds ranged from 3.307-3.375 eV, which was lower than that of SD (6.248 eV). Additionally, according to MEP the electrophile reaction of 5-substituted groups was beneficial to improving the biological activity against Wheat gibberellic and Grape anthracnose.


Sign in / Sign up

Export Citation Format

Share Document