scholarly journals Finite Element Simulations of Ballistic Impact on Glass Fiber Composite

Author(s):  
Johns Abraham ◽  
Dr. K. Senthil Kumar ◽  
Dr. S. Sankar ◽  
2021 ◽  
Vol 5 (10) ◽  
pp. 264
Author(s):  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Khalil Abdelrazek Khalil ◽  
Mohammed Y. Abdellah

The mechanical and ring stiffness of glass fiber pipes are the most determining factors for their ability to perform their function, especially in a work environment with difficult and harmful conditions. Usually, these pipes serve in rough underground environments of desert and petroleum fields; therefore, they are subjected to multi-type deterioration and damage agents. In polymers and composite materials, corrosion is identified as the degradation in their properties. In this study, tension and compression tests were carried out before and after preconditioning in a corrosive agent for 60 full days to reveal corrosion influences. Moreover, the fracture toughness is measured using a standard single edge notch bending. Ring stiffness of such pipes which, are considered characteristic properties, is numerically evaluated using the extended finite element method before and after preconditioning. The results reported that both tensile and compressive strengths degraded nearly more than 20%. Besides the fracture toughness decrease, the stiffness ring strength is reduced, and the finite element results are in good agreement with the experimental findings.


Author(s):  
Wensong Yang ◽  
Assimina A. Pelegri

A finite element method is employed to numerically evaluate the stiffness and energy absorption properties of an architecturally hybrid composite material consisting of unidirectional and random glass fiber layers. An ls-dyna finite element model of a composite hollow square tube is developed in which the position of the random fiber layers varies through the thickness. The assessment of the stiffness and energy absorption is performed via three-point impact and longitudinal crash tests at two speeds, 15.6 m/s (35 mph) and 29.0 m/s (65 mph), and five strain rates, ɛ· = 0.1 s−1, 1 s−1, 10 s−1, 20 s−1, and 40 s−1. It is suggested that strategic positioning of the random fiber microstructural architecture into the hybrid composite increases its specific absorption energy and, therefore, enhances its crashworthiness. The simulation data indicate that the composite structure with outer layers of unidirectional lamina followed by random fiber layers is the stiffest due to the considerable superior specific energy absorption of the random fiber micro-architecture. Moreover, it is illustrated that the specific energy absorption increases with the increased ratio of impact contact area over cross-section area. Of all the parameters tested the thickness of the unidirectional laminate on the specific energy absorption does not appear to have a significant effect at the studied thickness ratios.


2019 ◽  
Vol 777 (12) ◽  
pp. 73-77
Author(s):  
B.A. BONDAREV ◽  
◽  
T.N. STORODUBTSEVA ◽  
D.A. KOPALIN ◽  
S.V. KOSTIN ◽  
...  

2013 ◽  
Vol 38 (22) ◽  
pp. 9271-9284 ◽  
Author(s):  
Andrew H. Weisberg ◽  
Salvador M. Aceves ◽  
Francisco Espinosa-Loza ◽  
Elias Ledesma-Orozco ◽  
Blake Myers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document