scholarly journals Flight Trajectory Control System on Fixed Wing UAV using Linear Quadratic Regulator

Author(s):  
Ahmad Ashari ◽  
2020 ◽  
Vol 26 (21-22) ◽  
pp. 2037-2049
Author(s):  
Xiao Yan ◽  
Zhao-Dong Xu ◽  
Qing-Xuan Shi

Asymmetric structures experience torsional effects when subjected to seismic excitation. The resulting rotation will further aggravate the damage of the structure. A mathematical model is developed to study the translation and rotation response of the structure during seismic excitation. The motion equations of the structures which cover the translation and rotation are obtained by the theoretical derivations and calculations. Through the simulated computation, the translation and rotation response of the structure with the uncontrolled system, the tuned mass damper control system, and active tuned mass damper control system using linear quadratic regulator algorithm are compared to verify the effectiveness of the proposed active control system. In addition, the linear quadratic regulator and fuzzy neural network algorithm are used to the active tuned mass damper control system as a contrast group to study the response of the structure with different active control method. It can be concluded that the structure response has a significant reduction by using active tuned mass damper control system. Furthermore, it can be also found that fuzzy neural network algorithm can replace the linear quadratic regulator algorithm in an active control system. Because fuzzy neural network algorithm can control the process on an uncertain mathematical model, it has more potential in practical applications than the linear quadratic regulator control method.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alain G. de Souza ◽  
Luiz C. G. de Souza

The design of the spacecraft Attitude Control System (ACS) becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI) where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


Robotica ◽  
2020 ◽  
pp. 1-11
Author(s):  
Yun Ling ◽  
Jian Wu ◽  
Weiping Zhou ◽  
Yubiao Wang ◽  
Changcheng Wu

SUMMARY This paper proposes a novel laser beam tracking mechanism for a mobile target robot that is used in shooting ranges. Compared with other traditional tracking mechanisms and modules, the proposed laser beam tracking mechanism is more flexible and low cost in use. The mechanical design and the working principle of the tracking module are illustrated, and the complete control system of the mobile target robot is introduced in detail. The tracking control includes two main steps: localizing the mobile target robot with regards to the position of the laser beam and tracking the laser beam by the linear quadratic regulator (LQR). First of all, the state function of the control system is built for this tracking system; second, the control law is deduced according to the discretized state function; lastly, the stability of the control method is proved by the Lyapunov theory. The experimental results demonstrate that the Hue, Saturation, Value feature-extracting method is robust and is qualified to be used for localization in the laser beam tracking control. It is verified through experiments that the LQR method is of better performance than the conventional Proportional Derivative control in the aspect of converge time, lateral error control, and distance error control.


2019 ◽  
Vol 9 (15) ◽  
pp. 3144 ◽  
Author(s):  
Chunwei Zhang ◽  
Hao Wang

The Active Rotary Inertia Driver (ARID) system is a novel vibration control system that can effectively mitigate the swing vibration of suspended structures. Parametric analysis is carried out using Simulink based on the mathematical model and the effectiveness is further validated by a series of experiments. Firstly, the active controller is designed based on the system mathematical model and the LQR (linear quadratic regulator) algorithm. Next, the parametric analysis is carried out using Simulink to study the key parameters such as the coefficient of the control algorithm, the rotary inertia ratio. Lastly, the ARID system control effectiveness and the parametric analysis results are further validated by the shaking table experiments. The effectiveness and robustness of the ARID system are well verified. The dynamic characteristics of this system are further studied, and the conclusions of this paper provide a theoretical basis for further development of such unique control system.


Author(s):  
D Akdas ◽  
G A Medrano-Cerda

This paper considers the design and evaluation of stabilizing controllers for a ten-degree-of-freedom (10 DOF) biped robot using linear quadratic optimal control techniques and reduced-order observers. The controllers are designed using approximate planar dynamical models for the sagittal and lateral planes. Experiments were carried out to test the control system when the biped robot was in the double-support phase and the robot was subject to external disturbances. Although the control system is based on single-support models, the experimental results have shown that the robot successfully kept its given posture under disturbances.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Luiz Carlos Gadelha de Souza ◽  
Alain G. de Souza

The design of the satellite attitude control system (ACS) becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh) and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) methods to perform a planar manoeuvre assuming thrusters are actuators.


Author(s):  
Paul Owoundi Etouke ◽  
Jean Mbihi ◽  
Leandre Nneme Nneme

<p>This research paper presents a synthesis approach of a digital optimal PID/LQR control system for DCM (duty-cycle cycle modulation) Buck converters. The step response of the DCM Buck converter is obtained under Multisim virtual simulation framework. The related data file is saved as *.SCP format, and imported into EditPad Lite7 editor, then exported as Matlab file to be processed. The transfer function of the DCM Buck converter is computed from the imported step response data. Then, using the zoh (zero order holder) discretization method with 100 ms resampling period, the z-transfer function of the DCM Buck converter is computed, and that of the analog optimal PID/LQR(linear quadratic regulator) controller is calculated using Tustin’s discretization technique. Furthermore, the step response of the related closed loop digital PID control system is simulated and compared to that of the original analog PID/LQR control system. The simulation results obtained are presented in order to show the high precision as well as the reliability of Matlab-based synthesis of digital optimal PID/LQR control systems for DCM Buck converters.</p>


Author(s):  
Qalisha Putri Syahna ◽  
Elvan Yuniarti ◽  
Edi Kurniawan

Research has been conducted to analyzed the responses of the two axis camera gimbal control system for pitch and roll direction using the Linear Quadratic Regulator (LQR) control system. It focused on the effect from the value of gain Q in calculation of the LQR. The system output was plotted into a step signal so it will be analyzed with transient response method and plotted into sinusoidal signals to find the amplitude value along with the amplitude time. For comparison, the PID control system with the auto-tuning method was also used in this study. It has been done in order to find out whether the LQR control system is more appropriate to use in the two axis camera gimbal system or not. The result from the analysis of the variation of the Q value given at both angles is that the system runs stable when the value of P= 4 for roll angle and P= 6 for pitch angle. For the effect from value of gain Q on the whole system is it will make the output significally changed when the P=1-10. While the results of the comparison can prove that the LQR control system has a better system responses.


Sign in / Sign up

Export Citation Format

Share Document