scholarly journals Methods and means of increasing operation efficiency of the fleet of electric motors in non-ferrous metallurgy

2020 ◽  
pp. 73-78
Author(s):  
S. P. Kurilin ◽  
M. I. Dli ◽  
Y. B. Rubin ◽  
M. V. Chernovalova

Arranging efficient operation of the fleet of induction motors (IM) in non-ferrous metallurgy is a large-scale technical and economic problem. In scientific aspect, the problem is being solved in the framework of two research lines: in developing criteria for the efficient operation of the branch IM fleet and towards the development of methods and tools for implementing the IM fleet efficient operation. The article presents the results of the authors’ work in the mentiond areas. The basis for developing criteria for efficient operation is modeling of current operational states, taking into account the IM operational aging processes. The existing methods and models are poorly focused on fixation of the changes caused by operational aging. There exists a demand for special methods and tools for modeling the IM operational conditions. A mathematical model based on Kolmogorov equations is one of these tools. The system graph and equations of the mathematical model are given. An example of a practical calculation of the no-failure operation probabilities at different rates of repair operations is given. It is stated that the offered mathematical model can serve as an instrument for developing criteria of the IM pool efficient operation. The system of periodic operational diagnostics is ment to be a key element in enhancement of the IM fleet operation efficiency. A topological method worked out for the problems of operational diagnostics is focused upon analyzing the dynamics of operational changes taking place in the IM vector space. The matrix of current deviations is a medium of objective and reliable information about the current IM technical condition. Matching the matrices of current and limiting deviations allows us to make several essential conclusions concerning the IM technical state. The reported study was funded under as a part of state assignment (project number, FSWF-2020–0019), as well as at the expense of RFBR (project number, 20-01-00283).

2021 ◽  
Vol 54 (3) ◽  
pp. 1-33
Author(s):  
Blesson Varghese ◽  
Nan Wang ◽  
David Bermbach ◽  
Cheol-Ho Hong ◽  
Eyal De Lara ◽  
...  

Edge computing is the next Internet frontier that will leverage computing resources located near users, sensors, and data stores to provide more responsive services. Therefore, it is envisioned that a large-scale, geographically dispersed, and resource-rich distributed system will emerge and play a key role in the future Internet. However, given the loosely coupled nature of such complex systems, their operational conditions are expected to change significantly over time. In this context, the performance characteristics of such systems will need to be captured rapidly, which is referred to as performance benchmarking, for application deployment, resource orchestration, and adaptive decision-making. Edge performance benchmarking is a nascent research avenue that has started gaining momentum over the past five years. This article first reviews articles published over the past three decades to trace the history of performance benchmarking from tightly coupled to loosely coupled systems. It then systematically classifies previous research to identify the system under test, techniques analyzed, and benchmark runtime in edge performance benchmarking.


2021 ◽  
Vol 11 (6) ◽  
pp. 2551
Author(s):  
Hyobum Lee ◽  
Hangseok Choi ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.


Author(s):  
Lissett Barrios ◽  
Stuart Scott ◽  
Charles Deuel

The paper reports on developmental research on the effects of viscosity and two phases, liquid–gas fluids on ESPs which are multi stage centrifugal pumps for deep bore holes. Multiphase viscous performance in a full-scale Electrical Submersible Pump (ESP) system at Shell’s Gasmer facility has been studied experimentally and theoretically. The main objectives is to predict the operational conditions that cause degradations for high viscosity fluids when operating in high Gas Liquid Radio (GLR) wells to support operation in Shell major Projects. The system studied was a 1025 series tandem WJE 1000. The test was performed using this configuration with ten or more pump stages moving fluids with viscosity from 2 to 200 cP at various speed, intake pressure and Gas Void Fractions (GVF). For safety considerations the injected gas was restricted to nitrogen or air. The ESP system is a central artificial lift method commonly used for medium to high flow rate wells. Multiphase flow and viscous fluids causes problems in pump applications. Viscous fluids and free gas inside an ESP can cause head degradation and gas locking. Substantial attempts have been made to model centrifugal pump performance under gas-liquid viscous applications, however due to the complexity this is still a uncertain problem. The determination of the two-phase flow performance in these harmful conditions in the ESP is fundamental aspects in the surveillance operation. The testing at Shell’s Gasmer facility revealed that the ESP system performed as theoretical over the range of single flowrates and light viscosity oils up to Gas Volume Fractions (GVF) around 25%. The developed correlations predict GVF at the pump intake based on the operational parameters. ESP performance degrades at viscosity higher than 100cp as compared to light oil applications, gas lock condition is observed at gas fraction higher than 45%. Pump flowrate can be obtained from electrical current and boost for all range of GVF and speed. The main technical contributions are the analysis of pump head degradation under two important variables, high viscosity and two-phase flow inside the ESP.


2021 ◽  
Vol 18 (3) ◽  
pp. 410-420
Author(s):  
Vladimir N. KAVKAZKY ◽  
◽  
Yana V. MEL’NIK ◽  
Alexey P. LEIKIN ◽  
Andrey V. BENIN ◽  
...  

Objective: Chirkeyskaya HPP is by far the most powerful hydroelectric power plant in the North Caucasus with the highest arched dam in Russia and the second highest dam in the country after the Sayano-Shushenskaya HPP. This explains why it is called the pearl of the Caucasus. Methods: For the operation and maintenance of this unique structure, a large-scale complex of underground structures for various purposes was built, the technical condition of which must be constantly monitored. To carry out work on the survey of underground structures, the management of the design and survey institute of JSC “Lengidroproekt” decided to attract specialists from the Department of Tunnels and Subways and the Test Center “Strength” of Emperor Alexander I Petersburg State Transport University. The work was successfully carried out at the end of 2015. Results: The safety of underground structures was objectively assessed. Recommendations for the repair and further comprehensive reconstruction of the Chirkeyskaya HPP have been developed. Practical importance: Carry out work on the survey of underground structures of Chirkeyskaya HPP is allowes elaborate of complex measures on safety from Chirkeyskaya HPP.


2018 ◽  
Vol 78 (8) ◽  
pp. 1704-1714 ◽  
Author(s):  
François-René Bourgeois ◽  
Frédéric Monette ◽  
Daniel G. Cyr

Abstract To develop a better understanding for fixed biomass processes, the development of a nitrifying bacterial biofilm, as well as the performance of treatment during modifications to operational conditions of a full-scale submerged biological filter were examined. The development of the nitrifying biofilm was investigated at four depth levels (1, 2, 4 and 5 feet). The result of bacterial subpopulations analyzed by qPCR relative to the physico-chemical parameters of the wastewater during the various tests (sustained aeration, modified backwash parameters and inflow restriction) revealed an increase of the relative presence of nitrifying microorganisms throughout the biofilm (especially for nitrite oxidizing bacteria (NOB)), but this was not necessarily accompanied by a better nitrification rate. The highest observed nitrification rate was 49% of removal in the test cell during backwashing conditions, whereas the relative ammonia oxidizing bacteria (AOB) population was 0.032% and NOB was 0.008% of the total biomass collected. The highest percentage of nitrifying bacteria observed (0.034% AOB and 0.18% NOB) resulted in a nitrification rate of 21%. The treatment of organic matter determined by measuring the chemical and biochemical oxygen demand (COD, CBOD5) was improved.


Author(s):  
Charles H. O. Lombard ◽  
Daniel N. J. Els ◽  
Jacques Muiyser ◽  
Albert Zapke

South Africa’s coal-fired power stations use super heated steam to drive generator turbines. In arid regions, air-cooled condensers (ACCs) are used to condense the process steam. These ACCs consists of an array of over 200 axial flow fans, each driven by a motor via a reduction gearbox. Distorted fan inlet air flow conditions cause transient blade loading, which results in variations in output shaft bending and torque. A measurement project was conducted where the input and output shaft of such a gearbox were instrumented with strain gauges and wireless bridge amplifiers. Gearbox shaft speed and vibration were also measured. Torsional and bending strains were measured for a variety of operational conditions, where correlations were seen between gearbox loading and wind conditions. The input side experienced no unexpected loads from the motor or changing wind conditions, whereas output shaft loading was influenced by the latter. Digital filters were applied to identify specific bending components, such as the influence of fan hub misalignment and dynamic blade loading. Reverse loading of the gearbox was measured during the fan stop period, and vibration analysis revealed torsional and gearbox vibrations. This investigation documented reliable full scale ACC gearbox loads.


Sign in / Sign up

Export Citation Format

Share Document