scholarly journals Numerical Simulation of EPB Shield Tunnelling with TBM Operational Condition Control Using Coupled DEM–FDM

2021 ◽  
Vol 11 (6) ◽  
pp. 2551
Author(s):  
Hyobum Lee ◽  
Hangseok Choi ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Weiqiang Qi ◽  
Zhiyong Yang ◽  
Yusheng Jiang ◽  
Zhiyong Liu ◽  
Yinxin Guo ◽  
...  

Shield recovery in water-rich sand strata is a challenging issue in the field of shield tunnel engineering, especially when the end of the shaft cannot be reinforced by jet grouting or freezing or when the shield cannot be supported with a steel sleeve. Therefore, it is important to develop an effective recovery approach and adopt suitable techniques to control the risks. In this study, a new method based on filling the receiving shaft with water is proposed for the underwater recovery of an earth pressure balance (EPB) shield with zero end reinforcement from a metro tunnel in Tel Aviv, Israel. Several additional techniques are used to ensure safe recovery of the shield, including the design of a concrete cradle, drilling of pressure relief holes, control of excavation parameters, screw conveyor sealing, portal sealing, tail sealing, and grouting. Furthermore, according to the actual situation on site, filling the shaft with water to 1 m above the water level in the strata can prevent the fine sand from percolating into the shaft. Before the cutterhead approaches the underground diaphragm wall, the driving attitude should be strictly controlled, and the edge hob should be inspected for wear. The necessary thrust of shield tunneling in the underground diaphragm wall and shaft is calculated theoretically. In order to ensure the deformation control of the underground diaphragm wall and the smooth tunneling of the shield, the thrust of the shield excavating the underground diaphragm wall will not be larger than 12 000 kN, and the penetration degree will be limited to 3 mm/r. Qualitative observations and measurements of surface subsidence in the metro tunnel indicate that these risk mitigation techniques are effective and suitable for the underwater recovery of EPB shields in water-rich sand strata.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xinjiang Wei ◽  
Mobao Zhang ◽  
Shaojun Ma ◽  
Chang Xia ◽  
Xingwang Liu ◽  
...  

This paper is based on the case of the earth pressure balance (EPB) shield tunnelling project of the new Metro Line 2 undercrossing the existing Metro Line 1 in the soft soil urban area of Hangzhou. Because the EPB shield must break through a plain concrete wall before undercrossing the existing tunnels, the pipe roof prereinforcement was adopted to stabilize the soil between the existing tunnels and the new shield tunnel. The deformation characteristics of the existing tunnels in the process of double shield undercrossing were discussed. According to the variation of shield position, the settlement development could be divided into three stages: shield approaching subsidence, shield crossing heave, and shield leaving subsidence. The horizontal displacement shows a back and forth variation characteristic consistent with the direction of shield tunnelling. At the junction of tunnel and station, the shield undercrossing caused considerable differential settlement between the existing tunnel and the station. The construction of pipe roof prereinforcement will lead to the presettlement of the existing tunnels. The settlement of the existing tunnels caused by the attitude deviation of pipe roof and grouting disturbance should be reduced in reasonable ranges. In addition, the maximum longitudinal settlement of the existing tunnel during the shield second undercrossing was also discussed. It was considered that the influence of wall breaking is greater than the sequence of shield undercrossing. The driving parameters of shield tunnelling should be optimized before the second crossing.


2021 ◽  
Vol 11 (7) ◽  
pp. 2995
Author(s):  
Tae-Hwan Kim ◽  
In-Mo Lee ◽  
Hee-Young Chung ◽  
Jeong-Jun Park ◽  
Young-Moo Ryu

Soil conditioning is a key factor in increasing tunnel face stability and extraction efficiency of excavated soil when excavating tunnels using an earth pressure balance (EPB) shield tunnel boring machine (TBM). Weathered granite soil, which is abundant in the Korean Peninsula (also in Japan, Hong Kong, and Singapore), has different characteristics than sand and clay; it also has particle-crushing characteristics. Conditioning agents were mixed with weathered granite soils of different individual particle-size gradations, and three characteristics (workability, permeability, and compressibility) were evaluated to find an optimal conditioning method. The lower and upper bounds of the water content that are needed for a well-functioning EPB shield TBM were also proposed. Through a trial-and-error experimental analysis, it was confirmed that soil conditioning using foam only was possible when the water content was controlled within the allowable range, that is, between the upper and lower bounds; when water content exceeded the upper bound, soil conditioning with solidification agents was needed along with foam. By taking advantage of the particle-crushing characteristics of the weathered granite soil, it was feasible to adopt the EPB shield TBM even when the soil was extremely coarse and cohesionless by conditioning with polymer slurries along with foam. Finally, the application ranges of EPB shield TBM in weathered granite soil were proposed; the newly proposed ranges are wider and expanded to coarser zones compared with those proposed so far.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiao Liang ◽  
Taiyue Qi ◽  
Zhiyi Jin ◽  
Shaojie Qin ◽  
Pengtao Chen

Constructing a shield tunnel that crosses under a river poses considerable safety risks, and risk assessment is essential for guaranteeing the safety of tunnel construction. This paper studies a risk assessment system for a shield tunnel crossing under a river. Risk identification is performed for the shield tunnel, and the risk factors and indicators are determined. The relationship between the two is determined preliminarily by numerical simulation, the numerical simulation results are verified by field measurements, and a sample set is established based on the numerical simulation results. Fuzzy comprehensive evaluation and a backpropagation neural network are then used to evaluate and analyze the risk level. Finally, the risk assessment system is used to evaluate the risk for Line 5 of the Hangzhou Metro in China. Based on the evaluation results, adjustments to the slurry strength, grouting pressure, and soil chamber pressure are proposed, and the risk is mitigated effectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jian Cui ◽  
Wang-Hao Xu ◽  
Yong Fang ◽  
Li-Ming Tao ◽  
Chuan He

There are severe challenges for slurry pressure balance tunnel boring machine (TBM) tunnelling in sandy cobble soil of Beijing, Chengdu, and Lanzhou in China. And the problems caused by tunnelling from silty clay to sandy cobble stratum are more serious. With the change of stratum, the key parameters and surface settlement will change correspondingly. Controlling the key parameters and predicting the surface settlement accurately and efficiently is important for hazard mitigation and risk management. In this study, based on the Tsinghuayuan Tunnel project in Beijing, the key parameters and surface settlement while tunnelling from silty clay to sandy cobble stratum are studied. Firstly, the difference of key parameters while tunnelling in two different strata is analyzed. The analysis shows that immediate responses to changes in the stratum are recommended in order to ensure construction efficiency. Then, a refined 3D finite difference model is developed to simulate the slurry TBM tunnelling in different strata. For refined simulation, three key parameters obtained from measurement data were applied to the 3D models, and the simulation results were compared with the field data. Results show that the refined model has good performance in terms of the accuracy and efficiency. This study provides a good engineering practice reference for slurry TBM tunnelling in mixed strata.


2014 ◽  
Vol 1065-1069 ◽  
pp. 373-377
Author(s):  
Jing Cao ◽  
Hai Xing Yang ◽  
Bo Liang ◽  
Hai Ming Liu

Chamber earth pressure is one of the significant parameters during the Earth Pressure Balance (EPB) shield construction processing. The soil arching effect is existence when the tunnel depth is enough. It is significant to consider the influence of arching effect to analyze the pressure in soil chamber in shield tunneling. In this paper, the influence of arching effect is considered to calculate the chamber earth pressure. Firstly, the soil is supposed as loose media, and the necessary buried depth of producing arching affects is deduced according to the loose media theory. Then, based on the characteristic of proper arching axis, the equation and the height of proper arch are obtained. At last, the calculation formula of minimum chamber earth pressure of EPB shield tunnel is deduced which can consider the effect of arching effect.


2010 ◽  
Vol 168-170 ◽  
pp. 357-364
Author(s):  
Ji Feng Liu ◽  
Bo Liu ◽  
Hui Zhi Zhang

to evaluate the influence of soil-water coupled and shield tunnel construction induced around soil disturbance damage on ground surface settlement, the process of shield tunnel construction induced around soil disturbance is analyzed, the FLAC3D numerical simulation are carried out, and a newly-modified tunnelling-induced ground settlement calculation method based on disturbance degree of around soil and soil-water coupled is presented, and these methods are applied in case of Beijing Metro 10thLine. It is indicated that considering the influence of the shield tunnelling-induced around soil disturbance damage, and soil-water coupled induced soil properties weakening and the excess pore water pressure dissipating induced soil consolidation to the ground surface settlement are necessary, the calculating result of the newly-modified surface settlement prediction method, and the result FLAC3D numerical simulation all agree well with in-site observed data of Beijing Metro 10th Line.


2013 ◽  
Vol 35 (2) ◽  
pp. 3-17 ◽  
Author(s):  
Rafik Demagh ◽  
Fabrice Emeriault

Abstract The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.


Author(s):  
Arulampalam Paul Suyanthiran

This study describes the causes of shield tunnel segment cracks and alignment issues during shield tunnelling. The study was conducted in Down Town Line 3 (DTL3) contracts 926 and 927 twin tunnel projects in Singapore. It is revealed that these issues arose when Tunnel Boring Machine (TBM) shoving on curve alignment though TBM is designed with articulation, which allows the machines to handle tight curves with ease. The study focused on how construction methodology affects the quality of tunnelling in terms of alignment and segment cracks. It was found that the clearance between the tail shield and tunnel lining was not maintained during mining. As a result, the tail shield exerts stress on the segments and causes cracks. In addition, the tunnel alignment deviated from pre-designed alignment, which directly affects the safety and durability of the shield tunnel. This study concludes that a proper selection of ring type “right lead” or “left lead” and the appropriate key selection, along with the skill of the workers, significantly solve segment cracks and alignment issues.


Sign in / Sign up

Export Citation Format

Share Document