The method of measuring the radiation power of the material under study and the blackbody model for determining the normal emissivity of the material

2019 ◽  
pp. 9-13
Author(s):  
V.Ya. Mendeleyev ◽  
V.A. Petrov ◽  
A.V. Yashin ◽  
A.I. Vangonen ◽  
O.K. Taganov

Determining the surface temperature of materials with unknown emissivity is studied. A method for determining the surface temperature using a standard sample of average spectral normal emissivity in the wavelength range of 1,65–1,80 μm and an industrially produced Metis M322 pyrometer operating in the same wavelength range. The surface temperature of studied samples of the composite material and platinum was determined experimentally from the temperature of a standard sample located on the studied surfaces. The relative error in determining the surface temperature of the studied materials, introduced by the proposed method, was calculated taking into account the temperatures of the platinum and the composite material, determined from the temperature of the standard sample located on the studied surfaces, and from the temperature of the studied surfaces in the absence of the standard sample. The relative errors thus obtained did not exceed 1,7 % for the composite material and 0,5% for the platinum at surface temperatures of about 973 K. It was also found that: the inaccuracy of a priori data on the emissivity of the standard sample in the range (–0,01; 0,01) relative to the average emissivity increases the relative error in determining the temperature of the composite material by 0,68 %, and the installation of a standard sample on the studied materials leads to temperature changes on the periphery of the surface not exceeding 0,47 % for composite material and 0,05 % for platinum.


1996 ◽  
Author(s):  
Michail G. Galushkin ◽  
Vladimir S. Golubev ◽  
V. V. Dembovetsky ◽  
Yuri N. Zavalov ◽  
Valentina Y. Zavalova

2004 ◽  
Vol 34 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Rimma T Kuznetsova ◽  
T N Kopylova ◽  
G V Mayer ◽  
L G Samsonova ◽  
Valerii A Svetlichnyi ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2876
Author(s):  
Napat Kaewtrakulchai ◽  
Kajornsak Faungnawakij ◽  
Apiluck Eiad-Ua

Oil palm male flowers (PMFs), an abundant agricultural waste from oil palm plantation in Thailand, have been utilized as an alternative precursor to develop nanoporous carbons (NPCs) via microwave-assisted pyrolysis combined potassium hydroxide (KOH) activation. The influences of relevant processing variables, such as activating agent ratio, microwave power, and activation time on the specific pore characteristics, surface morphology, and surface chemistry of PMFs derived nanoporous carbons (PMFCs) have been investigated to explore the optimum preparation condition. The optimum condition under a microwave radiation power of 700 W, activation holding time of 6 min, and activating agent ratio of 2:1 obtained the PMFC with the highest Brunauer–Emmett–Teller (BET) surface area and total pore volume approximately of 991 m2/g and 0.49 cm3/g, composed of a carbon content of 74.56%. Meanwhile, PMFCs have a highly microporous structure of about 71.12%. Moreover, activating agent ratio and microwave radiation power indicated a significant influence on the surface characteristics of PMFCs. This study revealed the potential of oil palm male flowers for the NPCs’ production via microwave-assisted KOH activation with a short operating-time condition.


2020 ◽  
Vol 15 (01) ◽  
pp. P01016-P01016
Author(s):  
A.H. Esmaeili ◽  
S. Matlou ◽  
A. Rostam ◽  
K. Goudarzi

Sign in / Sign up

Export Citation Format

Share Document