Tilt-Rotor Quadrotor Control System Design and Mobile Object Tracking

2019 ◽  
Vol 20 (10) ◽  
pp. 629-639
Author(s):  
M. Shavin ◽  
D. Pritykin

We design the navigation and control system for unmanned aerial vehicle (UAV) with four tilting rotors. The considered UAV implements the so-called X-sceme, which implies the main body and four symmetrical beams, upon which rotors with propellers are mounted. It is different from the classical quadrotor by having four additional servomotors that may change the orientation of the rotors with respect t the main body, thus increasing the control parameters number. Greater number of the actuators in the system, on the one hand, opens new venues for UAVs’ applications but, on the other hand, makes the mathematical model of the UAV’s dynamics quite complicated. The latter calls for new control algorithms to be developed. We start by forming the mathematical models of the UAV’s dynamics. It is shown that the introduction of the tilting motors allows implementing independent control of the quadrotor’s position and attitude. The control loop is designed on the base on the analytical dynamics inversion. The expressions for the control parameters thus obtained are subjected to the numerical analysis, which allows taking into account technical constraints for maximal motor speed and tilt angles. Feedback in the control loop is implemented by simulation of the on-board sensors’ signals, whose characteristics correspond to those of the sensors used in the UAV’s experimental prototype design. The signals are processed with the aid of the unscented Kalman filter algorithm. The results of numerical experiments corroborate the efficiency of the developed control and navigation algorithms. The mission simulated in the numeric experiments is tracking of a pre-defined trajectory and pointing with a body-fixed camera at a mobile object, which, in turn, moves along a programmed trajectory.The results of the numeric experiments show that the UAV is capable of performing complex maneuvers with independent position and attitude control.

2014 ◽  
Vol 644-650 ◽  
pp. 722-725
Author(s):  
Fan Wu

A large cement factory as an example, according to the requirements of process and control parameters of production line of raw mill, this paper researches and designs the automatic control system of cement raw mill production line based on PCS7 and PROFIBUS. The design of the whole system consists of three levels: field layer, control layer and operation layer which are connected by Ethernet and PROFIBUS implementation, and focus on the design of the feed flow includeing feed composition, feed machine speed loop control etc. Through the on-site operation, the system is stable and reliable, and has good application and promotion effect.


2015 ◽  
Vol 63 (7) ◽  
Author(s):  
Daniel Gaida ◽  
Christian Wolf ◽  
Robin Eccleston ◽  
Michael Bongards

AbstractClosed-loop control of the substrate feed as well as the application of online instrumentation are important to achieve optimal biogas plant operation. Therefore, this paper presents two novel approaches for online instrumentation and control to achieve optimal AD plant operation based on middle-infrared spectroscopy on the one hand and nonlinear model predictive control on the other hand. At present, research into both techniques is being performed separately, with the intention that in the future the spectroscopic measurements will be integrated into the control loop.


1992 ◽  
Vol 9 ◽  
pp. 414-414
Author(s):  
M.A.C. Perryman

AbstractThe quasi-simultaneous measurement of the one-dimensional angular separation of stars on the sky, on both small and large angular scales, rely on the measurements made by the IDT detector, as well as on inputs from the star mapper and attitude control system. This presentation will concentrate on the results of a comparison of the results of the IDT data processing carried out by the FAST and NDAC data analysis teams. The extent to which the intensity and phase measurements agree between the two reductions, and the extent to which the differences are consistent with expected photon noise errors, will be illustrated.


2018 ◽  
Vol 175 ◽  
pp. 03047
Author(s):  
Hao Chang ◽  
Dafang Wang ◽  
Hui Wei ◽  
Qi Zhang ◽  
GuangLi Dong

This paper presents the composition and working principle of the hardware and software of the measurement and control system based on VeriStand and Simulink for a tracked model vehicle. The hardware of the system is composed of a CompactRIO controller and acquisition cards, torque/speed sensors and a gyroscope. The vehicle control logic model and data processing model are built in Matlab/Simulink. VeriStand is adopted to manage models and interact with people. The system can control motor speed on both sides of the vehicle and collect data such as sprocket torque and speed, vehicle attitude on real-time. At last, we test and verify the system can work successfully.


Author(s):  
RAJA MUNUSAMY ◽  
Ugur Guven ◽  
Om Prakash

Attitude control system plays the important role for to maintain the satellite to desired orientation. To control the satellite it is necessary to do the attitude stabilization. Attitude stabilization achieved by Star sensor, sun sensor, Earth sensors. Attitude control is mainly used for antenna pointing accuracy, camera focus to earth surface and solar panel pointing toward sun. Due to tumbling effect satellite will rotate all the direction in the space. To maintain the orientation of the satellite it is necessary to design the attitude determination and control. Satellite consider as the rigid body. Inertia matrix describes the rigid body dynamics.  The orientation of the satellite determine by Euler angle and Quaternion. Low earth orbit satellite will have enormous amount of aerodynamic drag stinking the satellite body and gravitational attraction another problem. Because of that satellite dwell time is reduced. It means satellite more time spending particular part of the earth. The attitude estimation is measures by the orientation of vectors. Attitude estimation means to find the position and orientation of flying object with respect to the fixed reference of reference. Vector remains considered in the frame of reference to compute for find the orientation of the body of the satellite in the inertial reference system. Earth is an inertial reference frame, Satellite is a body frame. Attitude sensor used to measure the satellite orientation in the reference frame. This will help in accurately predicting the orbit deviation and a control system to correct if any by providing the satellite momentum means ‘mass in motion’ changes in a body rapidly in Low earth orbit due to centripetal force acting on a satellite. Attitude control system (ACS) need the numerical simulation to find the required torque demand by the help of difference between reference input (Attitude) signal and feedback signal measure by attitude sensor to trim the control surface maintain the actuator required orientation . The results will consist of two parts the first part consisting of the attitude estimation using Euler angle and Quaternion method, second part consist of estimate the control torque from magnetic torquer and error estimation using non-linear filter (Unscented Kalman Filter) with MATLAB simulation.


Author(s):  
WALUYO WALUYO ◽  
ADITYA FITRIANSYAH ◽  
SYAHRIAL SYAHRIAL

ABSTRAKMotor DC banyak digunakan di industri kecil dan besar.Kecepatan motor DC sering tidak stabil akibat gangguan dari luar maupun perubahan parameter dan torsi beban sehingga perlu dilakukan rancangan kontroler.Kontroler yang dirancang menggunakan PID yang terdiri dari tiga jenis cara pengaturan yang dikombinasikan, yaitu kontrol P (Proportional), kontrol I (Integral) dan kontrol D (Derivatif).Kontroler yang dirancang disimulasikan menggunakan perangkat lunak. Hasil simulasi menunjukan kontroler PID untuk kendali kecepatan motor DC ini menghasilkan kondisi robust (kokoh) saat nilai Kp = 1,1, Ti = 0,1, Td = 3,7. Hasil dari parameter kendali yang dirancang memiliki error steady state 0,99 % dan dengan settling time 3,7 detik pada rise time 2,00 detik dan nilai peak terletak pada 0,99. Kecepatan awal yang dihasilkan mendekati set point yang diinginkan pada detik ke 6 dan kecepatannya tidak ada penurunan atau tetap konstan sampai dengan detik ke 100.Kata kunci: Motor DC, PID, Heuristik, Steady State, Rise Time ABSTRACT DC motors are widely used in small and large industries. Their speeds are often unstable due to interference from outside or change the parameters and load torque, so that it was necessary to design a controller. The controller was designed using a PIDconsists of three types of arrangements, which are mutually combined way, namely the control P (Proportional), control I (Integral) and control D (Derivative). The controllers were designed using software for simulation. The simulation results showed the PID controller for DC motor speed control produced robust conditionswhen the value of Kp, Ti and Tdwere 1.1,  0.1 and 3.7 respectively. The results of the control parameters had error steady state 0.99 % and the settling time of 3.7 seconds at 2.0 sec rise time and the peak value was 0,99. The resulted initial velocity was very fast to approach the desired set point in the sixth second and its speed was remain constant until 100thsecond.Keywords: Motor DC, PID, Heuristic, Steady State, Rise Time


Author(s):  
Antonio Ciriello ◽  
Daniela Kohler ◽  
Terry Morton ◽  
Thomas Lang

The I & C (Instrumentation and Control) design of the CVCS (Chemical and Volume Control System) for the EPR™ nuclear power plant in Taishan (TSN NPP) is shortly introduced and the corresponding I & C module assignment procedure, according to the functional safety class principle, is described. An example of the I & C module assignment procedure is given for a control loop of the CVCS. In addition, the corresponding advantages and drawbacks are described and discussed. The approach described introduces a new method for the concerned I & C design by improving the interface between the system, process, and I & C engineering design. In fact, a fruitful collaboration was reached between the system and I & C design for the EPR™ project in Taishan, for the concerned interface.


2012 ◽  
Vol 426 ◽  
pp. 126-130
Author(s):  
Zhi Rong Liao ◽  
Liang Zhou ◽  
D. Gao ◽  
X.L. Zhang ◽  
M.L. Yin

To simluate the effects of lunar dust environment veritably by using lunar dust effects simulator, a detection and control system based on singlechip microcomputer was developed. In this system, peripheral circuits with stepper motor driver, temperature sensor and rotary transformer were used to collect the signals and control the temperature as well as speed. Stepper motor speed up/down curve, digital convolution filter and error compensation were adhibited for improving the system accuracy. The results showed that this method was simple, reliable and had high control accuracy.


Sign in / Sign up

Export Citation Format

Share Document